Linear Algebra and Lab 1
Course Information
Textbook: Contemporary Linear Algebra by Howard Anton and Robert C. Busby
Classes: Mondays and Thursdays 11am~1pm; 자2-424호
Labs: Time and place will be announced when necessary.
Grades: 2 Midterms (200 points), Final Exam (100 points), Homework, Quizzes and Labs (200 points)
Instructor's Office Hours: W 2~4 pm (Room 417), sy2kang@kangwon.ac.kr
Teaching Assistants: Jang, Deokgyu (장덕규) dkjang@kangwon.ac.kr (Room 419 )
Park, Joosung (박주성) js-park@kangwon.ac.kr (Room 419 )
Announcement
- 4/4 중간고사1 (Sections 1.1~3.3); 5/9 중간고사2 (Chapters 3 and 4); 6/10 기말고사(Chapters 6 and Sections 7.1~7.3)
- Office hours before final exam: 수요일 2~4pm; 박주성 (화요일 3~5pm, 수요일 1pm~); 장덕규 (화요일 1~3pm, 수요일 1~3pm); or you can ask any questions via email.
Topics covered in class
- 3/4 Section 1.1 Vectors and matrices; n-space
- 3/7 Section 1.2 Norm, dot product, orthogonality, orthonormality
- 3/11 Section 1.3 Lines and planes in the n-space
- 3/14 Section 2.1 Linear system: homogeneous linear system, consistent and inconsistent linear systems, elementary row operations
- 3/18 Section 2.2 Row reduction: row echelon form, reduced row echelon form, Gauss elimination method; Gauss-Jordan elimination method
- 3/21 Section 2.2 Dimension theorem for homogeneous systems; Section 3.1 Operations on matrices
- 3/25 Section 3.1 Matrix multiplication; inner and outer product of column matrices; Section 3.2 Vector space axioms for matrices, properties of matrix multiplication
- 3/28 Section 3.2 Identity matrix, invertible matrix, singular matrix, properties of transposes, traces and inverses; Section 3.3 Elementary matrix
- 4/1 Section 3.3 Characterizations of invertibility, inversion algorithm, consistency problem
- 4/8 Section 3.4 Subspaces, solution spaces, spanning sets, linearly independent sets, linearly dependent sets
- 4/11 Section 3,4 Linear independence and homogeneous linear system; Section 3.5 Solution set of a non-homogeneous linear system is an affine space
- 4/15 Section 3.5 Solution set of a non-homogeneous linear system, column space, hyperplane; Section 3.6 Diagonal matrix, triangular matrix
- 4/18 Section 3,6 Properties of triangular matrices, symmetric and skew-symmetric matrix; Section 3.8 Partitioned matrices and parallel processing
- 4/22 Section 3.7 LU-decomposition; Section 4.1 History of determinants
- 4/25 Section 4.1 Determinants, minor, cofactor expansion; Section 4.2 Properties of determinants
- 4/29 Section 4.2 Properties of determinants; Section 4.3 Adjoint of a matrix, formula for inverse
- 5/2 Section 4.3 Cramer's rule and applications
- 5/6 Section 4.4 Eigenvalues and eigenvectors
- 5/13 Section 6.1 Linear transformation
- 5/16 Sections 6.1 and 6.2 Geometry of linear transformations
- 5/20 Section 6.2 Orthogonal operators; Section 6.3 Kernel and range
- 5/23 Section 6.3 Kernel and range; Section 6.4 Composition and invertibility of linear transformation
- 5/27 Section 7.1 Basis and dimension
- 5/30 Section 7.2 Properties of bases
- 6/3 Section 7.3 The fundamental spaces of a matrix
Homework Assignments
- Set 1 (Due 3/11) Work on Cauchy-Schwarz inequality, triangle inequality, parallelogram law for vectors;
- p.13 #6(a),10(b),12(c),16,20,22;
- p.26 #4(b,d),8,10(a),12(c),18,20,22(a),24,26,28
- Set 2 (Due 3/18)
- p.28 #P1,P3,P4, p.35 #2(a),6(b),8(c), 14,20,26,36,42(a), p.38 #D4
- p.45 #4,10(b),12(a),14,16,20,22,26(b)
- Set 3 (Due 3/25)
- p.59 #6,8,10,16,20,28,30,34,38,44, p.62 #D2,D5, p.63 #P1
- p.90 #6(a,d,f),8(b,e),12,18,20,24,30,34
- Set 4 (Due 4/1)
- p.91 #22 p.106 #2,5,8(b),16,18,20(b),26,30,32 p.108 #D1,D2
- p.119 #2,4(d),6(d),8
- Suggested problems p.119 #9,11,13,15,19,22,23,25,27,29,31,34,P1,P8
- Set 5 (Due 4/15)
- p.132 #4,6,8,10,14,16,18,20(a,b), 22(c),24,26,30; p.135 P2,P3
- p.141 #2,4,16; p.142 P3
- Set 6 (Due 4/22)
- p.141 #8,10(a,c),12,14,18,20; p.142 D2,D3,D4,P4
- p.151 #2,4(b,c),6,8,12,16,20,22,24,26,28; p.152 D1,D10,P2
- p.170 #2(a,b),6,8,10,12,14,18
- Set 7 (Due 4/29)
- p.164 #4,6,8,10,12,14
- p.182 #6,12(b,f),16,18,22,26(c,d),36;p.183 D4; p.184 P1
- p.192 #6 Prove Lemma 4.2.0 given in class
- Set 8 (Due 5/6)
- p.192 #8(b),10,14,20(a),22,24,26(a),28,32,34(c),35; p.194 D1,D4,D5,D8
- p.207 #2,6,8,12,14,16,18,20,22,26,28,52; p.209 D6,D7
- Suggested problems p.221 odd-numbered problems, p.223 problems in Discussion and Discovery
- Set 9 (Due 5/20)
- p.277 #2,4,6,8,10,12,14,16,18,20,22,24,26,30,34,36,38
- p.293 #2,4,6,8,10,12,16,18
- Set 10 (Due 5/27)
- p.295 #D2,D3,D4,D5
- p.303 #2,4,6,8,10,12,16,18,19(b),20(b),21
- p.315 #2,4,6,12,14,16,20,28
- Set 11 (Due 6/3)
- p.334 #2,4,6,8,10,12, D4
- p.340 #2,4,6,8,10,12,14,16,18
- ( Suggestions for Section 7.3) p.349 #2,4,8,10,12,16,18,20,22,24,26,28,30,32