Courses

Linear Algebra and Lab I (선형대수학 및 연습 I) 2012 Spring

Course Information

Textbook: Contemporary Linear Algebra by Howard Anton and Robert C. Busby

Classes: Mon, Tr. 3~5pm

Labs: Time and place will be announced when necessary.

Grades: 2 Midterms (200 points), Final Exam (200 points), Homework and Quizzes (100 points)

Instructor's Office Hours: W 2~4 pm (Room 417)

Teaching Assistants: Jang, Deokgyu (장덕규) dkjang@kangwon.ac.kr (Room 419 Tr 2~3pm)

Park, Joosung (박주성) js-park@kangwon.ac.kr (Room 419 Mon 2~3pm)

Announcement

  • 시험성적이 연구실앞에 게시되었습니다. 성적에 이상이 있거나 의문이 있을시 6월 21일 연구실 방문을 하거나 이메일로 연락하십시오.
  • 6월 14일 목요일 (3pm~5pm, Room 424): Final Exam covers Chapters 1 through 7.6 (except for sections 2.3, 5.1~5.4, 6.5)
  • 5월 17일 목요일: Midterm 2 covers Chapters 3,4 and 6 중간고사2 해답.
  • 5월 3일 목요일: Quiz 2 covers Sections 3.6 through 4.4.
  • Matlab 1: 장소 (미래관 전산실 301호); 시간 (4월 30일 월요일 4~6시); lab점수 (20점). 숙제힌트 아래 첨부파일란에 있습니다.
  • 4월16일 월요일 수업은 4월 18일 수요일 9교시로 옮깁니다. 꿈설계가 있는 학생들은 이메일로 연락바랍니다.
  • 4월 9일 월요일: Midterm 1 covers Chapters 1, 2 and 3.1~3.5. Sample Problems 와 해답 중간고사1해답앞면 중간고사1해답뒷면
  • 3월 19일 월요일: Quiz 1 covers Chapters 1 and 2. Solutions

Topics covered in class

  • 3/5 Section 1.1 Vectors and matrices; n-space, Section 1.2 Norm and dot product
  • 3/8 Section 1.2 Orthogonality; Orthnormal set; More geometry in Rn , Section 1.3 Vector equation of lines
  • 3/12 Section 1.3 Vector equations of planes, Section 2.1 Linear systems; Elementary row operations, Augmented matrix
  • 3/15 Section 2.2 Solving linear systems by row reduction; Row echelon form; Reduced row echelon form; Gauss elimination; Gauss-Jordan elimination
  • 3/19 Section 2.2 Homogeneous linear system, Section 3.1 The sum, product, and scalar product of matrices, Section 3.2 Properties of matrix sum, product and scalar multiplcation
  • 3/22 Section 3.1 Transpose and trace of a matrix, Section 3.2 Properties of transpose and inverse of a matrix
  • 3/26 Section 3.2 Transpose and dot product, Section 3.3 Elementary matrix; Inversion algorithm
  • 3/29 Section 3.4 Subspaces and spanning set,
  • 4/2 Section 3.4 Linear Independence
  • 4/5 Section 3.5 The geometry of linear system
  • 4/9 Midterm 1
  • 4/12 Section 3.6 Diagonal,upper trangular,lower triangular matrics; the inverse of I-A; nilpotent matrix, Section 3.8 Partition a matrix into blocks
  • 4/18 Section 3.7 LU-decomposition, Section 3.5 Symmetric and skew-symmetric matrices
  • 4/19 Section 4.1 Determinants; cofactors; minors; cofactor expansion, Section 4.3 matrix of cofactors; adjoint matrix
  • 4/23 Section 4.2 Properties of determinants, Section 4.3 inverse formula equation; Camer's rule
  • 4/26 Section 4.3 Geometric interpretation of determinants Section 4.4 Eigenvalue; eigenvector; characteristic polynomial; eigenvalue anaysis; determinants and traces in terms of eigenvalues
  • 4/30 Matlab 1
  • 5/3 Quiz 2, Section 6.1 and 6.2 Matrices for rotation, reflection, orthogonal reflection, contraction, dilation, compression,expansion, shears in R2; Matrices for rotation, reflection, orthogonal reflection in R3 ; Mathlab 2
  • 5/7 Section 6.1 Matrix transformation; linear transformation,
  • 5/10 Section 6.2 Orthogonal operators, Section 6.3 Kernel; range
  • 5/14 Section 6.4 Compositions and inverses of linear transformations
  • 5/17 Midterm 2
  • 5/21 Section 7.1 Basis and dimension
  • 5/24 Section 7.2 Properties of bases
  • 5/31 Section 7.3 Fundamental spaces of a matrix, Section 7.4 Dimension Theorem
  • 6/4 Section 7.5 Rank Theorem, Section 7.6 Pivot Theorem
  • 6/7 Section 7.6 Column-row factorization, finding bases for four fundamental spaces; finding bases for Rn

Homework Assignments

  • Set 1 (Due 3/12)
    • p.13 #6(a),10(b),12(c),16,20,22,
    • p.26 #4(b,d),8,10(a),12(c),18,20,22(a),24,26,28
    • p.35 #2(b),6(a),8(c)
  • Set 2 (Due 3/19)
    • p.35 #14,20,28,36
    • p.45 #10(b),12(a),14,16,20,22,26(b)
    • p.59 #6,8,10,16,20,28,30,38,44
  • Set 3 (Due 3/26)
    • p.90 #6(a,d,f),8(b,e),18,22,24,30
    • p.106 #5,8(b),16,18,26,30
  • Set 4 (Due 4/2)
    • p.119 #4(b,c),10,12(a),14,16,22,26,28,32
    • p.132 #2(b),4(a),6(a),14,24(b,d),26
  • Set 5 (Due 4/9)
    • p.132 #6(b),10,18(a),20(c),22(b),28
    • p.141 #4,8,10,14
  • Set 6 (Due 4/23)
    • p.151 #2(a),4(b),6,8,10,12,18(a),20,22,24,26(b),27
    • p.164 #4,6,8,10,12,14
    • p.170 #2(a),4(b),8,10(a),12(b),14,17
  • Set 7 (Due 4/30)
    • p.182 #6,12(b,f),16,18,22,26(c,d),36
    • p.192 #6(a,b,c),8(b),10,14,20(a),26(a),28,32,34(c),35
    • p.207 #2,6,8,12,14,16,18,20,22,26,52,56
    • p.221 #4,6,8(b),10,12(b),24,32
  • Set 8 (Due 5/6)
    • p.275 #6(a),8(b),10(b,d),18,20(a),22,24(b,c),26(c,d),30,36,40
    • p.293 #4,6(b),8,10(a,c),12,13,14,16,18(b)
    • p.303 #2(c,d),4,8,10(b),12,14,20(b)
    • p.315 #4,6(b),8(a),12(b),14,16
  • Set 9 (Due 5/31)
    • p.334 #2(c),4,6(a),8,12(b),D1
    • p.340 #2(c),4(b),6(a),8,10,12,16(a),18
  • Set 10 (Due 6/7)
    • p.349 #2,6,12,18,22,24,26,28,30,32
    • p.357 #2,4,8,10,12,14(b),17,20
    • p.368 #2,4,6,8,10(a,b),12(a,b),14
    • p.377 #2,6,8,11,14,15,16