ABSTRACT

Title of Dissertation: The Gauge-Uzawa and Related Projection
Finite Element Methods for the Evolution

Navier-Stokes Equations

Jae-Hong Pyo, Doctor of Philosophy, 2002

Dissertation directed by: Professor Ricardo H. Nochetto
Department of Mathematics

The Navier-Stokes of incompressible fluids are still a computational challenge.
Numerical difficulties arise from the incompressibility constraint, which requires
a compatibility condition (discrete inf-sup) between the finite element spaces for
velocity and pressure, the nonlinear convection term, and the presence of dis-
parate scales in both space and time. Several projection methods have been
introduced for time discretization to circumvent the incompressibility constraint,
but suffer from boundary layers. They are either numerical or due to non-physical
boundary conditions on pressure.

Recently W. E and J.-G. Liu [7] introduced the gauge method which is a
projection type method. The main advantage of the gauge method is its PDE

formulation with “artificial” boundary conditions imposed on the non-physical

gauge variable ¢ rather than the pressure. Its chief disadvantage is the imple-
mentation of such boundary conditions at the discrete level, because they involve
both normal and tangential derivatives of ¢. Even though E and Liu suggested
that either Neumann or Dirichlet boundary conditions can be chosen for ¢, we dis-
close below a compatibility constraint for the Dirichlet condition which severely
limits its use. We construct 4 time-discrete gauge methods and prove error es-
timates for both velocity and pressure under realistic regularity assumptions via
a variational approach. This improves upon the error analysis of J.G. Liu and
C. Wang [30], which relies on asymptotic expansions, requires strong regularity,
and yields no estimate for pressure. We introduce variational methods to do ac-
curate boundary computations of normal and tangential derivatives of ¢ in the
discrete finite element spaces. The need of such derivatives, however, restricts
the applicability of Gauge methods to 2d. Also the computing cost is relatively
high, because ¢ requires a higher polynomial degree than pressure and velocity
for a stable computation.

In order to overcome these difficulties, we construct the Gauge-Uzawa (GU)
method which exhibits several advantages. The first one is that GU is a fully dis-
crete algorithm, and is amenable to a complete and rigorous analysis. In contrast
many projection-type methods are formulated as suitable time discretizations
but are difficult to study once space is also discretized. Often, the discrete spaces
for velocity, pressure, and other artificial variables such as ¢ cannot be chosen
arbitrarily. In contrast, GU does not incorporate inconsistencies or incompati-
bilities between space and time discretizations. The second advantage of GU is
in dealing with boundary values. As opposed to the Gauge method, GU does

not require any boundary calculation and thus applies to any space dimension.

The third advantage of GU is the relatively low computational cost. Since ¢
is included in the pressure space, which is of lower polynomial degree than the
velocity space, GU is more efficient than the Gauge method. This is documented
herein with extensive numerical simulations. The last advantage is that GU is
unconditionally stable, which extends its applicability to large Reynolds numbers.
We prove error estimates for both velocity and pressure under realistic regularity
assumptions via a variational approach, extending the ideas and methodology of
the semi-discrete scheme to the fully discrete case. All our numerical experiments
show that errors of GU are smaller than those of other projection-type scheme.

We study the motion of incompressible fluids driven by thermal effects. The
underlying model consists of coupling the Navier-Stokes equations with Boussi-
nesq approximation with the heat equation. We couple GU with a finite element
discretization of the heat equation, and implement the system, and test its be-
havior for several interesting situations (including a benchmark computation by
Gresho et al [13]). We finally derive a complete error analysis for the method
very much in the spirit of GU for the Navier-Stokes equations.

The Uzawa method is a very well known iteration for the stationary Stokes
equations. It consists of a velocity update U; involving a solve for the Laplacian,

followed by a pressure update, a so-called Richardson update:
Pj+1 = P] — a div Uj+1.

The relaxation parameter o > 0 must be taken sufficiently small for the iteration
to converge. We prove, as was generally believed, that o = 1 is a suitable and
simple choice for o. This relies on the elementary, yet new, observation that
| div U||, < [[VU]|, for all U € Hy(2). We also extend this result to stable finite

element discretizations by showing that the discrete inf-sup constant (3 is always

< 1 and the rate of convergence is 1 — 3.

The Gauge-Uzawa and Related Projection
Finite Element Methods for the Evolution

Navier-Stokes Equations

by

Jae-Hong Pyo

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2002

Advisory Committee:

Professor Ricardo H. Nochetto, Chairman/Advisor
Professor John E. Osborn

Professor Jian-Guo Liu

Professor Bo Li

Professor Howard Elman

(© Copyright by
Jae-Hong Pyo

2002

DEDICATION

To parent and my family

i

ACKNOWLEDGEMENTS

I would like to thank my advisor, professor Ricardo H. Nochetto for his
advice, support, and encouragement throughout the duration of the
work. His help was not limited to mathematics. He arranged for me
to take an English course and provided financial support during the
financial crisis in Korea. I especially appreciate him for his guidance
in getting me a T.A. position, which was my first job in America.

I wish to thank my parents for their financial support, for praying to
God, and for believing in me.

I also would like to thank my family members for their endurance and
support for a long time.

Most of all, I thank God for guiding me.

iii

List of Tables

TABLE OF CONTENTS

List of Figures

1 Introduction

1.1 Navier-

Stokes Equations L.

1.2 Preliminaries and Assumptions

1.3 Benchmark Problems

1.3.1
1.3.2

2 Projection

Example: Smooth Solution

Example: Singular Solution

Methods

2.1 Chorin Method

2.2 Chorin-Uzawa Method

2.3 Numerical Results for Chorin and Chorin-Uzawa Methods

23.1
2.3.2
2.3.3

234

Experiments with P, — P; Elements
Experiments with P, — P; Elements
Experiments for Chorin-Uzawa with P, — P; Elements on

Regular Mesh (b) in Figure 1.2

Example : Singular Solution

v

vii

viii

19
19
21

24

3 Gauge Method 42

3.1 Motivation of Gauge Method 42
3.2 Time Discretization and Algorithms 45
3.3 Stability 49
3.3.1 Explicit Convection Scheme 50
3.3.2 Semi-Implicit Convection Scheme 52

3.4 A Priori Error Analysis for Velocity of Algorithms 3.1-3.2 with
Neumann Condition L. 53
3.4.1 Semi-Implicit Convection Scheme 55
3.4.2 Explicit Convection Scheme 64

3.5 A Priori Error Analysis for Velocity : Algorithms 3.3-3.4 with
Dirichlet Condition o000 67
3.6 A Priori Error Analysis for Pressure 70
3.7 Conclusion and Numerical Results for Gauge methods 88
3.7.1 Algorithms 3.1 and 3.2 : Neumann Boundary Condition . 89
3.7.2 Algorithm 3.1 : P, — P, — P; on Regular Domain 106
3.7.3 Algorithms 3.3 and 3.4 : Dirichlet Boundary Condition . . 108
3.7.4 Example : Singular Solution 124
4 Tterative Solvers for the Stationary Stokes Equations 126
4.1 Variational computation of boundary differentiations 127
4.2 Space Discretization via Gauge Method 131
4.3 Simulations and Conclusions for the Gauge method 136
4.3.1 Numerical Experiments for Algorithms 4.1-4.2 137
4.3.2 Numerical Experiments for Algorithms 4.3-4.4 148
4.4 Gauge-Uzawa Method for Stationary Stokes 158

4.5 Numerical Experiment for Gauge-Uzawa 163

4.6 Uzawa Method 0. 164
5 Gauge-Uzawa Method for the Navier-Stokes Equations 169
5.1 Motivation of Gauge-Uzawa Method 169
5.2 Stability 173
5.3 Error Estimate for Velocity 175
5.4 Error Estimate for Pressure 192
5.5 Numerical Experiments L0000 222

5.5.1 Example : Smooth Solution on Distorted Mesh (a) in Fig-

5.5.2 Example : Smooth Solution on Regular Mesh (b) in Figure

1.2 231
5.5.3 Example : Singular Solution 234
5.5.4 Example : Forward Facing Step 236
5.5.5 Example : Driven Cavity Flow. 237

6 Gauge-Uzawa Method for the Evolution Boussinesq Equations 238

6.1 Gauge-Uzawa Method for Boussinesq Equations 240
6.2 Regularity of Boussinesq Equations 241
6.3 Stability 248
6.4 Error Estimate for Velocity and Temperature 251
6.5 Error Estimate for Pressure 269
6.6 Numerical Experiments Lo 0L 276
Bibliography 292

vi

1.1

3.1

5.1

LIST OF TABLES

The Relation between Refinement Level and Finite Element Struc-

ture L e 22
Summary of Gauge Methods 88
The Notations of Error 179

vii

1.1
1.2
1.3

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

LIST OF FIGURES

(a) Macro mesh, (b) Refinement of a triangle
Quasi-Uniform and Regular Meshes with 4 Levels of Refinement .

The Computational Mesh for Singular Solution

Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method
(Dashed) with At = h? and P, — P; Elements.
Error Functions for Chorin Method with At = h? and P, — P,
Elements (DOF =24,963).
Error Functions for Chorin-Uzawa Method with At = h? and P, —
P; Elements (DOF =24,963).
Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method
(Dashed) with At =h and P, — P, Elements.
Error Functions for Chorin Method with At = h and P, — P;
Elements (DOF =24,963).
Error Functions for Chorin-Uzawa Method with At = h and P; —
P, Elements (DOF = 24,963).
Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method
(Dashed) with At = h? and P, — P, Elements.
Error Functions for Chorin Method with At = h? and P, — P,
Elements (DOF = 74,371).

viii

21

31

2.9 Error Functions for Chorin-Uzawa Method with At = h? and P, —
P; Elements (DOF = 74,371).
2.10 Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method
(Dashed) with At =h and P, — P, Elements.
2.11 Error Functions for Chorin Method with At = h and P, — P,
Elements (DOF = 74,371).
2.12 Error Functions for Chorin-Uzawa Method with At = h and P, —
Py Elements (DOF = 74,371).
2.13 Error Decay of Chorin-Uzawa Method with At = h? and P, — P,
Elements on Regular Mesh (b) in Figure 1.2.
2.14 Error Functions of Chorin-Uzawa Method with At = h? Chorin-
Uzawa Method with At = h and P; — P; Elements on Regular
Mesh (b) in Figure 1.2 (DOF = 24,963).
2.15 Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method
(Dashed) with At = h and P, — P; Elements.
2.16 Numerical Solution of Chorin-Uzawa Method with At = h and
P, — P, Elements (DOF =83,903).
2.17 Numerical Solution of Chorin Method with At = h and P, — P,
Elements (DOF = 83,903).

3.1 Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h? and Spaces P, — P, — P, Elements.
3.2 Error Functions for Algorithms 3.1 with At = h? and Spaces P, —
P, — P, Elements (DOF =24,963).
3.3 Error Functions for Algorithms 3.2 with At = h? and Spaces P, —
P, — P, Elements (DOF = 24,963).

X

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h and Spaces P, — P, — P, Elements.
Error Functions for Algorithms 3.1 with At = h and Spaces P, —
P, — P, Elements (DOF =24,963).
Error Functions for Algorithms 3.2 with At = h and Spaces P, —
P, — P, Elements (DOF =24,963).
Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h? and Spaces P, — P — P, Elements.
Error Functions for Algorithms 3.1 with At = h? and Spaces P, —
P, — P, Elements (DOF = 49,667).
Error Functions for Algorithms 3.2 with At = h? and Spaces P, —
P, — P; Elements (DOF = 49,667).
Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h and Spaces P, — P, — P, Elements.
Error Functions for Algorithms 3.1 with At = h and Spaces P, —
Py — P; Elements (DOF = 49,667).
Error Functions for Algorithms 3.2 with At = h and Spaces P, —
P, — P; Elements (DOF = 49,667).
Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h? and Spaces P, — P, — P, Elements.
Error Functions for Algorithms 3.1 with At = h? and Spaces P, —
Py — P, Elements (DOF = 74,371).
Error Functions for Algorithms 3.2 with At = h? and Spaces P, —

P, — P, Elements (DOF = 74,371).

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h? and Spaces P, — P, — P, Elements. 100
Error Functions for Algorithms 3.1 with At = h and Spaces P, —
P, — P, (DOF = 74,371) Elements. 101
Error Functions for Algorithms 3.2 with At = h and Spaces P, —
P, — P, Elements (DOF = 74,371). 101
Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h? and Spaces P, — P, — P, Elements. 102
Error Functions for Algorithms 3.1 with At = h? and Spaces P, —
P, — P, Elements (DOF =99,075). 103
Error Functions for Algorithms 3.2 with At = h? and Spaces P, —
P, — P; Elements (DOF = 99,075). 103
Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At =
h and Spaces P, — P; — P; Elements (DOF = 99,075). 104
Error Functions for Algorithms 3.1 with At = h and Spaces P, —
Py — P; Elements (DOF = 99,075). 105
Error Functions for Algorithms 3.2 with At = h and Spaces P, —
P, — P; Elements (DOF = 99,075). 105
Error Decay of Algorithm 3.1 with At = h% and Spaces P,—P,— P,
Elements on Regular Mesh (b) in Figure 1.2. 106
Error Functions of Algorithm 3.1 with At = h? and Spaces P, —

P, — P, Elements on Regular Mesh (b) in Figure 1.2 (DOF =
94,963). .+t e e 107
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =
h? and Spaces P, — P, — P, Elements. 108

xi

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

Error Functions for Algorithms 3.3 with At = h? and Spaces P, —
P, — P, (DOF = 24,963) Elements.
Error Functions for Algorithms 3.4 with At = h? and Spaces P; —
P, — P, Elements (DOF =24,963).
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =
h and Spaces P, — P, — P, Elements.
Error Functions for Algorithms 3.3 with At = h and Spaces P, —
Py — P, Elements (DOF =24,963).
Error Functions for Algorithms 3.4 with At = h and Spaces P; —
P, — P, Elements (DOF =24,963).
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =
h? and Spaces P, — P, — P, Elements.
Error Functions for Algorithms 3.3 with At = h? and Spaces P, —
P, — P, Elements (DOF = 49,667).
Error Functions for Algorithms 3.4 with At = h? and Spaces P, —
Py — P; Elements (DOF = 49,667).
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =
h and Spaces P, — P, — P, Elements.
Error Functions for Algorithms 3.3 with At = h and Spaces P, —
P, — P, Elements (DOF = 49,667).
Error Functions for Algorithms 3.4 with At = h and Spaces P, —
Py — P; Elements (DOF = 49,667).
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =

h? and Spaces P, — P, — P, Elements.

xii

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

3.51

Error Functions for Algorithms 3.3 with At = h? and Spaces P, —
Py — P, Elements (DOF = 74,371). . . . oo oot 117
Error Functions for Algorithms 3.4 with At = h? and Spaces P, —
P, — P, Elements (DOF = 74,371). 117
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =
h? and Spaces P, — P, — P, Elements. 118
Error Functions for Algorithms 3.3 with At = h and Spaces P, —
P, — P, Elements (DOF = 74,371). 119
Error Functions for Algorithms 3.4 with At = h and Spaces P, —
P, — P, Elements (DOF = 74,371). 119
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =
h? and Spaces P, — P, — P, Elements. 120
Error Functions for Algorithms 3.3 with At = h? and Spaces P, —
P, — P, Elements (DOF = 99,075). 121
Error Functions for Algorithms 3.4 with At = h? and Spaces P, —
Py — P; Elements (DOF = 99,075). 121
Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At =
h and Spaces P, — P; — P, Elements (DOF = 99,075). 122
Error Functions for Algorithms 3.3 with At = h and Spaces P, —
P, — P; Elements (DOF = 99,075). 123
Error Functions for Algorithms 3.4 with At = h and Spaces P, —

Py — P; Elements (DOF = 99,075). 123
Error Decay of Gauge Method Algorithm 3.1 with At = h and
P,— P, — Py Elements. 124

xiii

3.52 Numerical Solution of Gauge Method Algorithm 3.1 with At =h

and P, — P, — P3 Elements (DOF = 158,119).
0¢ .
4.1 W 0 at Each Corner Provided ¢ =0.
v
4.2 8(15 = 0 at Each Corner Provided @ =0. ... L.

ar ov
4.3 Difficulty of Variational Formulain3D

4.4 Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

Pr— P — P .
4.5 FError functions for Algorithm 4.1 with P, — P, — P,.
4.6 Error functions for Algorithm 4.2 with P, — P, — P,.
4.7 Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

PL—P — P, ..
4.8 Error functions for Algorithm 4.1 with P, — P, — P,.
4.9 Error functions for Algorithm 4.2 with P, — P, — P,.
4.10 Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

Po— P — Py .
4.11 Error functions for Algorithm 4.1 with P, — P, — P.
4.12 Error functions for Algorithm 4.2 with P, — P, — P,.
4.13 Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

Po— P — Py .
4.14 Error functions for Algorithm 4.1 with P, — P, — P,.
4.15 Error functions for Algorithm 4.2 with P, — P, — P,.
4.16 Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

Po— P —Ps. .
4.17 Error functions of Algorithm 4.1 with P, — P, — Py
4.18 Error functions for Algorithm 4.2 with P, — P, — P;.

Xiv

4.19

4.20
4.21
4.22

4.23
4.24
4.25

4.26
4.27
4.28

4.29
4.30
4.31

4.32
4.33
4.34
4.35

5.1

Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

Pr— P — P . 148
Error functions for Algorithm 4.3 with P, — P, — P,. 149
Error functions for Algorithm 4.4 with P, — P, —P,. 149
Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

PL—P — P . 150
Error functions for Algorithm 4.3 with P, — P, — P,. 151
Error functions for Algorithm 4.4 with P, — P, — P,. 151
Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

Po— P —Pp . 152
Error functions for Algorithm 4.3 with P, — P, — P. 153
Error functions for Algorithm 4.4 with P, — P, — P,. 153
Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

Po— P — Py . e 154
Error functions for Algorithm 4.3 with P, — P, — P,. 155
Error functions for Algorithm 4.4 with P, — P, — P». 155
Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

Po— P —Ps. . o 156
Error functions of Algorithm 4.3 with P, — P, — Py 157
Error functions for Algorithm 4.4 with P, — P, — P;. 157
Mesh Analysis of Algorithm 4.5 with Spaces P2— P1—P1 . .. 163
Error Functions of Algorithm 4.5 with Spaces P2 — P1 — P1 . . 164

Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa
Method (Dashed) with At = h? and P, — P, Elements. 223

XV

5.2

9.3

5.4

9.5

2.6

5.7

2.8

9.9

5.10

5.11

5.12

5.13
5.14

6.1

Error Functions for Gauge-Uzawa Method with At = h? and P, —
P; Elements (DOF = 24,963).
Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa
Method (Dashed) with At = h and P, — P, Elements.
Error Functions for Gauge-Uzawa Method with At = h and P,—P;
Elements (DOF =24,963).
Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa
Method (Dashed) with At = h? and P, — P; Elements.
Error Functions for Gauge-Uzawa Method with At = h? and P, —
P, Elements (DOF = 74,371).
Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa
Method (Dashed) with At = h and P, — P; Elements.
Error Functions for Gauge-Uzawa Method with At = h and P,—P;
Elements (DOF = 74,371).
Error Decay of Gauge-Uzawa with At = h? and P; — P, Elements
on Regular Mesh (b) in Figure 1.2.
Error Functions of Gauge-Uzawa with At = h? and P, — P; Ele-
ments on Regular Mesh (b) in Figure 1.2 (DOF = 24,963).

Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa
Method (Dashed) with At = h and P, — P; Elements.
Numerical Solution of Gauge-Uzawa Method with At = h and
P, — P, Elements (DOF =83,903).
Initial and Steady State Solutions.

Driven Cavity Flow for h = At =1, Re=10,000.

L
128°

Initial and Boundary Values of Thermal Driven Cavity

xVi

. 233

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Thermal Driven Cavity of Experiment 1 at time=0.003. 278

Thermal Driven Cavity of Experiment 1 at time=0.01. 278
Thermal Driven Cavity of Experiment 1 at time=0.025. 279
Thermal Driven Cavity of Experiment 1 at time=0.1. 279
Thermal Driven Cavity of Experiment 1 at time=0.2. 280
Thermal Driven Cavity of Experiment 2 at time=30. 281
Thermal Driven Cavity of Experiment 2 at time=100. 282
Thermal Driven Cavity of Experiment 2 at time=250. 282
Thermal Driven Cavity of Experiment 2 at time=1000. 283
Thermal Driven Cavity of Experiment 2 at time=2000. 283
Initial and Boundary Values of Benard Example 284
The Benard Example at t=0.05 285
The Benard Example at t=0.10 286
The Benard Example at t =0.15 287
Steady State Solution of Benard Examplet=1.0 288

xvii

Chapter 1

Introduction

1.1 Navier-Stokes Equations

The mathematical description of viscous fluid flows is given by the Navier-Stokes
equations (NSE), a system of partial differential equations. The following math-
ematical model for physically relevant incompressible flows in a bounded domain

QinR? (d = 2 or 3) is the starting point for the subsequent numerical algorithms,

(1
w+ (u-Vu+Vp— —Au=1, inQ,
Re
divu =0, in ,
{ (1.1.1)
u(x,0) = uy, in Q,
u=_0, on 0f2.

The unknowns (u, p) are the velocity vector field u = u(x,¢) and the scalar pres-
sure field p = p(x,t). Function f = f(x,t) is the given forcing term, Re > 0 is
the Reynolds number, and uy is a given initial velocity.

Equations (1.1.1) are difficult to solve numerically for several reasons. The

first difficulty arises from the incompressibility constraint, which requires a dis-

crete inf-sup condition between finite elements spaces for velocity and pressure
[12]. The second is the lack of initial and boundary values of pressure which
leads to inconsistencies and boundary layer formation for projection type meth-
ods. The third difficulty is due to stability which limits the applicability of many
schemes to low Reynolds numbers. Finally, a theoretical and essential difficulty
is the regularity of the exact solution, which may not be smooth enough to get
optimal convergence order.

The mixed finite element method is a classical and effective algorithm to solve
the stationary Stokes equations, and it has been applied to (1.1.1) upon coupling
with suitable time discretizations. It leads to a saddle point formulation with
relatively higher computational cost than the Poisson equation due to the size
and indefinite nature of the resulting matrix. In the late 60’s, projection methods
which decouple velocity and pressure were introduced independently by Chorin
[4] and Temam [26, 27], and several other projection type methods were con-
structed later to avoid the difficulties of previous methods [2, 18, 21]. Projection

type methods consist of two main computational steps per time iteration:

(a) Momentum step : find an artificial velocity U which satisfies an approximate

momentum equation but not the incompressible constraint.

(b) Projection step : decompose the artificial velocity U into a divergence free

velocity u and a gradient field.

Some methods include one or two other artificial variables to improve accuracy.
Most projection methods exhibit inconsistencies and require initial or boundary
value of pressure which are not physical. This leads to the formation of bound-
ary layers for pressure and a related loss of accuracy. Chapter 2 introduces some

projection methods, displays inconsistencies along with their artificial boundary

conditions. Finally numerical and theoretical results are compared with those of
Gauge-Uzawa method.

E and Liu introduced the gauge method to overcome these disadvantages of
projection type methods [7]. The gauge method employs the gauge variable ¢
and the auxiliary field a = u— V¢, which in turn lead to two gauge formulations
(3.1.4) and (3.1.6) equivalent to (1.1.1). The main advantage of these gauge for-
mulations is to enforce boundary conditions on the non-physical variable ¢, which
is smoother than p, without degrading the approximation of p. In Chapter 3, we
construct 4 time-discrete gauge methods by combining formulations (3.1.4) and
(3.1.6), with two Neumann and Dirichlet boundary conditions (3.1.7) and (3.1.8)
for ¢. We prove energy error estimates under realistic regularity assumptions via
a variational approach. This improves upon the error analysis of Liu and Wang
[30], which relies on asymptotic expansions, requires strong regularity only valid
for special flows, and yields no estimate for pressure.

The chief disadvantage of these 4 methods is the implementation of such
boundary conditions at the discrete level, because they involve both normal and
tangential derivatives of ¢. We introduce variational methods to perform accu-
rate boundary computations of normal and tangential derivatives of ¢ in the dis-
crete finite element spaces in Chapter 4. This restricts the applicability of gauge
methods to 2d. Since the boundary conditions of a®*! and ¢™*! are coupled,
an explicit boundary condition has to be imposed on a"™!. This extrapolation
technique causes an incompatibility for the Dirichlet condition ¢ = 0, which has
not been noticed earlier. Another serious difficulty is to find compatible finite
element spaces, because of the unusual couplings of the gauge variable ¢ with

the auxiliary field a through boundary values and with the pressure p via the

heat equation. So ¢ demands a higher polynomial degree than one for pressure
and velocity for a stable computation, which is not optimal in terms of degrees
of freedom since ¢ is just an auxiliary variable.

In order to discover and study stable finite element spaces, we apply gauge
methods to the stationary Stokes system in Section 4.2. Numerical experiments
with many different combinations of finite element space show that the error
due to decoupling boundary conditions is bigger than the inf-sup stability er-
ror. This can be avoided if ¢ has a higher degree than velocity and pressure,
but at the expense of a larger computational cost. An important discovery is
the equivalence between Gauge and Uzawa methods at the continuous level as
iterative solvers for Stokes. In contrast to the Gauge method, which transfers
data through the boundary, the Uzawa method does it by updating the pressure
in the domain. In order to overcome the differentiation of ¢ on the boundary,
we introduce the Gauge-Uzawa scheme: a Gauge method which transfers data as
the Uzawa method.

In Section 4.4, we prove convergence of the Gauge-Uzawa method for the
stationary Stokes equations via a variational approach, and find the convergence
rate 1 — 2, where 8 < 1 is the inf-sup constant. This proof follows from the
apparently new estimate ||div u|| < ||Vu]| for all u € H}(f2), and property 8 < 1.
Numerical results for the Gauge-Uzawa method show much better results than
for the Gauge method when applied to the stationary Stokes equations. Fur-
thermore we discover that the Gauge-Uzawa method is just the Uzawa method
with a divergence free velocity and a relaxation parameter o = 1. This implies,
in particular, that the relaxation parameter a > 0 in the Uzawa method can be

taken o = 1, as was generally believed, instead of sufficiently small.

In Chapter 5, we introduce the Gauge-Uzawa (GU) method for the evolution
Navier Stokes equation (1.1.1). This method exhibits several advantages with

respect to other projection methods:

e GU leads naturally to a fully discrete algorithm, which is amenable to a
complete and rigorous analysis. In contrast many projection-type methods
are formulated as suitable time discretizations but are difficult to study
once space is also discretized. Often, the discrete spaces for velocity, pres-
sure, and other artificial variables such as ¢, cannot be chosen arbitrarily.
In contrast, GU does not incorporate inconsistencies or incompatibilities

between space and time discretizations.

e In contrast to the Gauge method, GU does not require any boundary cal-

culation and thus applies to any space dimension.

e GU entails a relatively low computational cost. Since ¢ is included in the
pressure space, which is of lower polynomial degree than the velocity space,

GU is more efficient than the Gauge method.

e GU is unconditionally stable, which extends its applicability to large Reynolds

numbers.

We prove error estimates for both velocity and pressure under realistic regularity
assumptions via a variational approach, extending the ideas and methodology in
Chapter 3 to the fully discrete case. All our numerical experiments show that
errors of GU are smaller than those of any other projection-type schemes.

In Chapter 6, we apply and analyze the GU method for the Boussinesq equa-
tions. In order to prove convergence under realistic regularity assumptions, we

study the regularity of the exact solution of Boussinesq equations in Section 6.2.

We prove stability in Section 6.3 and derive error estimates in Sections 6.4 and
6.5 in the spirit of Chapter 5. We present the thermal driven cavity simulation
in Section 6.6, which is a benchmark computation by Gresho et al. [13], and a

stationary numerical solution of the Benard problem.

1.2 Preliminaries and Assumptions

This chapter is mainly devoted stating assumptions, reviewing some well-known
lemmas, and to proving basic properties of (1.1.1). The basic mathematical
theory of this section can be found in the work of Heywood and Rannacher [16],
and in the books of A. Prohl [22] and Constantin and Foias [5].

Let H*(Q) be the Sobolev space of L*(Q)-functions with s weak derivatives in
L2(Q), L2(Q) = (L2(€2))* and H*(Q) = (H*(2))%, where d is the space dimension.
We will use ||-]|, to denote the L?(Q)-norm, and (-, -) to denote the L*(Q)-inner
product for both scalar and vector-valued functions. Let ||-||, denote the Sobolev
norm of H*(2).

Consider the following Stokes equations:

)
—Av+Vqg=1£, inQ,
{ divv =0, in €, (1.2.1)

v=0, on 0f).

\

Assumption 1 (About the domain) The unique solution (v,q) of the steady

Stokes equation (1.2.1) satisfies

[vlly + llally < Clifllo.

We remark that the validity of Assumption 1 is known if 99 is of class C? [5],
or if 99 is a two-dimensional convex polygon [17], and is generally believed for

convex polyhedra [16].

Assumption 2 (Data regularity) The velocity u and the forcing term in (1.1.1)

satisfy
u(0) € H*(Q) N {v € Hy(Q) | divv = 0},

f, f, € L=(0, 00; L*(2)).
Assumption 3 (Regularity of the solution u) There exists M € R such that

sup [|Vu(t)[ly, < M.
t€[0,T1]

We note that Assumption 3 is automatically satisfied if d = 2 [16].
Let us introduce the following space which includes the solution v of the

Stokes system (1.2.1):
Z(Q) ={z € Hy(Q) | divz = 0}. (1.2.2)

Then the space Z(2) is a closed subspace of Hj () [12]. And we denote by Z*

the dual space of Z(2) normed by

f
z+ = Sup (’Z>.
sz ||zl

]

(1.2.3)

Then we have the following lemma:

Lemma 1.1 (Norm equivalence) Let (v, g, f) be the functions in the Stokes system

(1.2.1). Then there exist two positive constants Cy, Cy such that

CilIf

z- < IVl < Collf]

VAN

PROOF.

z+ = Sup (£, 2) _ (Vv, Vz) — (g, div 2)

Z€Z(Q) l|zll, _zez(Q) 1z,

< Cffvll;-

And since v € Z,

f -A
z- = SUp (£, 2) >< v+ Vg, v) >Cv]l,- =

zez(e) llzll, vl

We recall now the well known Sobolev Imbedding Theorem [11, 12]:

Lemma 1.2 (Sobolev Imbedding Theorem) Let Q be a bounded domain in R?,
and let u € WP(Q) be the space of LP(Q) functions with weak derivatives in

L?(2) and vanishing trace. Then there exists a constant C' = C(d, p) such that
IIHIILE%(Q) < ClVullyq), forp<d. (1.2.4)

To handle the convection term in (1.1.1) it is convenient to introduce the trilinear

form

N(u,v,w) = /(u -V)v - wdx. (1.2.5)
Q
Then we have well known lemma [12]:

Lemma 1.3 (Properties of N') Let u,v, and w be in H'(Q) and divu = 0. If

u-v=0 or v=0 on S,

then

N, v,w)=-N(u,w,v) and N(u,v,v)=0.

Sobolev imbedding Lemma 1.2 yields the following results, which will be used

later in dealing with the convection term of (1.1.1)

Lemma 1.4 If d < 4, then

ClhullollvIly [[wll;
/u-v-wdxg (1.2.6)

o Cllall[[vlloliwllo,

and if d < 3, then

Clull Ve 11

/u v -wdx < (1.2.7)
11
o Cliall [[vlig (w17 [|wll,-

PROOF. Since (1.2.6) is proved in [12], we simply sketch the proof of (1.2.7). By

Holder and Young’s inequalities, we get

[uevwix < Claevlylll

Q
< C||u||L6(Q)||v||L3(Q)||W||O
(1.2.8)
1o
< Cllullgso1vIlle [Vl e o
10001
< Cllafl [[vllg VI {Iwllo- m

Heywood and Rannacher [16] proved the following:

Lemma 1.5 (A priori estimates) Let the weight function o(t) be defined by
o(t) = min{¢,1}. (1.2.9)

Suppose Assumptions 1-3 hold, and let 0 < T < oo. Then there exists a constant

M > 0 such that the solution of (1.1.1) satisfies

sup {[[u(®)ll, + llae®ll, + ()], } < M, (1.2.10)
o<t<T
r 2 2

/ lw(@)IPdt < M, sup o@)llw @I < M, (1.2.11)
0 o<t<T

and

/0 o () {01 + @12 + [p(6)]2Ydt < M. (12.12)

The following two lemmas indicate the condition to get rid of o(¢):

Lemma 1.6 Suppose Assumptions 1-3 hold and let 0 < T < oo. Then

IV, ()], < C (1.2.13)
if and only if ,
| Iuaoliat + sup Va0l < . (1.2.14)
0 o<t<T

Furthermore, if (1.2.13) holds, then
T
| Um0+ o)1) de < . (1215)

PRrROOF. By differentiation of the momentum equation with respect to ¢, we get

1
uy + (u - Vyu+ (u-V)u, + Vp, — EAut =f,. (1.2.16)

First, we assume (1.2.13). Multiplying (1.2.16) by uy yields

1

Re <Vllt, Vutt) = —N(llt, u, 'I.ltt) - N(ll, Uy, 'I.ltt) + (ft, 'I.ltt> . (1217)

||Utt||§ +

Lemmas 1.4 and 1.5 lead to

2 1 d 2

[lullg + Q—I%E“VIRHO < Cllug|ly[[allyllaglly + [1llo el

i T (1.2.18)

< Cllully + ClIf:llg + §||utt||0.
On integrating in time ¢ from 0 to 7" implies
> | ClualPdt + V()2
— u b u
2 /o tilo 2Re ¢ 0
(1.2.19)

1 T
< VO +C [l +1815) o

10

By assumption (1.2.13) and Lemma 1.5, we derive (1.2.14). Since t — ||Vu(?)||,

is continuous, (1.2.13) is a trivial consequence of (1.2.14).

To prove (1.2.15), we use the Helmholtz decomposition of —Au € L?(Q2) as

follows:

—Au=v+Vq

(1.2.20)

with divv =0 and v- v = 0 on 0f2. Since (u, —¢) is a solution of the stationary

Stokes problem with right-hand side v, from Assumption 1 we have
[[all, < Clivil.

Multiplying (1.2.16) by v; we arrive at

1

T (Auy, vi) + N(ug,u,vy) + N(u, g, vy) = (£, vy).

<utt) Vt) -

Since u = 0 on 02 and divu = 0 in §2, we can write

1d ,
§%||Vut||0 +

1

2
E“Vt”() < C||ut||1||u||2||vt||0 + C||ft||0||vt||0

1
2 2
< CRelluglly + CRellfilly + 5 lIvilo-

Integrating in time ¢ from 0 to 7", we deduce

1 T
IIVUt(T)||§+—R / [villodt < ||V (0)]ls
€ Jo

T
“CRe / (J[aell? + 1£117) at.
0

In view of (1.2.13) and |||, < C||v¢||,, we infer that

T
/ |2t < C.
0

Now we prove

T 2
/ It < C.
0

11

(1.2.21)

(1.2.22)

(1.2.23)

(1.2.24)

(1.2.25)

(1.2.26)

From (1.2.16)

1
IVpello = Hlaeelly + [[ullolially, + lullollwell, + -l Al + lifllo

IN

1
C (”utt”o +lluello + fluelly + Holfuell, + ||ft||0) :

(1.2.27)

Squaring and integrating in time from 0 to 7', and using (1.2.13), and (1.2.25),

we easily get (1.2.26) and finish the proof.

Lemma 1.7 Suppose Assumptions 1-3 hold, and let 0 < T < oo. Then we have

2
2.dt < M.

[t

Furthermore, if (1.2.18) hold, then

2
2 <M.

sup |[[ug(t)]
o<t<T

PROOF. Since ||Vp|

2. =0, for all Vp € L(Q), from (1.2.16) we get

1
*+_ Au
7+ 2 llw)

zz < l(u-V)ul

z- T [[(w- V)u

z- + ||

[[ug] z
= A1+A2+A3+A4.

Invoking Lemma 1.4, the convection term A; can be bounded by

-V
A = sup - Vu,z)
’ii((?) ||Z||1
wl.[|lull, ||z
< sup [[uelfol[ull, |zl < Cllugfpllull,,
zezi(oﬂ) ||Z||1

and using Lemma 1.3, the other convection term A, becomes

-V
4 = (V)2
’ii(é’) ||Z||1
ully]|ull,l| Vel
< sup T ¢ < Cllallyllugf,-
e (@) 2|,

12

(1.2.28)

(1.2.29)

(1.2.30)

(1.2.31)

(1.2.32)

The diffusion term A3 can be bounded as follows:

1 (Vuy, Vz)y C
Az = — sup —— < —||Vuyf,.
>~ Re 2%& Iz, = ReIVuill (1.2.33)
z#0
Inserting (1.2.31)-(1.2.33) back into (1.2.30), we get
C
[aeellz- < C (lullslfullo + [[£llo) + 7o IIVullo- (1.2.34)

In view of Lemmas 1.5-1.6 and Assumption 2, integration in time yields (1.2.28)

and (1.2.29). n

Remark 1.8 Since Lemmas 1.6 and 1.7 are used to estimate only pressure error,

we use (1.2.13) as an assumption in only pressure analysis sections.
Lemma 1.9 Let u € H{(Q). Then
Idiv ull, < [|[Vul|,. (1.2.35)

Proor. We prove this in 2 dimensions, since it can be extended to higher di-
mensions without any additional effort. Given u = (u,v) € H}(Q), there exists

a sequence {u"} € C?(Q) such that

|div (u” —u)||, >0 and [|[V(u" —u)|, =0, as n — oo. (1.2.36)
Integrating by parts for u” = (u",v") € CP(2) implies

|divu”|)? = /Q (Opu™ + 0,v™)* dx
_ /Q (B + 20,ud,0" + (8,0")?) dx
= /Q ((05u™)? + 20,0"Fyu™ + (9,v")?) dx (1.2.37)
< /Q (0™ + (0,0™)2 + (Byu™)? + (Byo™)2) dx

= ||[Vu”|lz.

13

We thus have ||div u”||2 < [|[Vu|]?, for all n. The assertion (1.2.35) follows from
(1.2.36) by passing to the limit n — oo. u

Lemma 1.9 is a simple, but apparently new, result with important implica-
tions (see Lemma 1.11 and main theorems). We now consider a finite element
discretization. Let ¥ = { K} be a finite decomposition of meshsize h, 0 < h < 1,
of the polyhedral domain 2 into closed elements K. The finite element spaces

for velocity and pressure are of the form

Vi = {v, e H(Q) : vi|x € V(K), VK € T}

(1.2.38)

Py = {pn € CO(Q) : pulxc € P(K), VK €T, /phdx 0},
Q

where V(K) and P(K) are spaces of uniformly bounded degree polynomials with
respect to K € . We also define V9

Vi = {vi € V,, : Hy(Q)}. (1.2.39)

Remark 1.10 (P, C C? needed for some algorithms) The discrete velocity uy
for the Gauge-Uzawa method of Chapters 3, 4, and 5 is the sum of some u; € V,
and py € Pp:

u, = ﬁh + V,Oh (1240)

So uy, is a discontinuous function across interelement boundaries, i.e. u, ¢ Hj(Q).

We impose a discrete divergence free constraint in the sense that
(up, Vgp) =0 forall g, € Py. (1.2.41)
Hence,

(Von, Van) = — (Un, Vi) = (div iy,), forall g, € Py. (1.2.42)

This explain why discrete pressures must be continuous, a property used in most

results below. However, this continuity is not necessary in the Uzawa method,

14

Section 4.6, because the velocity in the Uzawa Algorithm 4.7 is not discrete

divergence free.
The spaces V,, and P, must satisfy the celebrated compatibility condition [12]:

Assumption 4 (Discrete Inf-Sup) There exists a constant B > 0 such that

inf sup (div v, pn) > B. (1.2.43)

Pr€fnv,evy [[Vallillpnllo
An alternative way of writing (1.2.43) is

For all p, € P, there exists v, € V;, such that

2 X (1.2.44)
(div v, pn) = ||pallg and |[val]; < B||Ph||o-

Assumption 5 (Mesh shape regularity) There exists a constant C > 0 such that
forall K € ¥

diam(Bg) > C diam(K), (1.2.45)

where By is the largest ball contained in K.

Assumption 6 (Approximability) Let assume v € H**! and ¢ € H®. And let

m~+ 1 and m be a polynomial degrees of Vy, and P, respectively. If we define

k = min{s, m}, (1.2.46)

then there exist approximations vy € Vy, and q, € Py, such that

IV = vallo + 2llv = vally < CR* V|,

(1.2.47)
llg = anlly < Ch®[lgll,-

15

Assumption 7 (Discrete Initial Condition) The discrete initial value uj) is the

L2-projection of ugy into Vy:
(u) , wp) = (up, wp), Vw, €V, (1.2.48)

By Lemma 1.9, we can find an upper bound of the inf-sup constant 8 in Assump-

tion 4.

Lemma 1.11 Let B be the constant in the inf-sup condition (1.2.43). Then we

have

B<1. (1.2.49)

PROOF. Let p, be in the pressure space P,. By the Assumption 4, there exists

vy € V,, such that
, 2 1
(div vy, pn) = |lpally and |vall; < B”ph“o- (1.2.50)
Then, by (1.2.50) and Lemma 1.9, we get
Ipally = (div va, ps)
< ldiv vallollpally (1.2.51)

1
< [VVallpllpnlly < B”Ph”?y

So we get 8 < 1. n
We now recall some useful results. We start with the well known inverse inequality

lemma [11, 12]:

Lemma 1.12 (Inverse Inequality) Let the mesh ¥ satisfy Assumption 5. Let uy, €

Vi(Q), and 1 <p<o0,1<g<00,0<m<n. Then

m—ntd_d
[nllws iy < CH™ 57 Ul i)- (1.2.52)

16

Lemma 1.13 (A Priori Energy Estimate) The unique solution (v, q) of the steady

state Stokes equations (1.2.1) satisfies

[vlly + llglly < ClIEN - (1.2.53)

Now, we define the finite element formulation of Stokes equations (1.2.1) : find

vy, €V, and g, € Pp, such that

<VVh, VWh> — <qh, div Wh) = <f, Wh) y VWh € Vh,
(1.2.54)
(rp, divvy) =0, Vry, € Py.

Lemma 1.14 Let (v, q) and (vp, qn) be solutions of the Stokes equations (1.2.1)

and (1.2.54), respectively. If the Assumptions 1-6 hold, then
v = Vally + hllv = vall, + kllg = ally < CH (Ivll, + llall,) . (1:2.55)

Lemma 1.15 Let (vp,qn) € Vi, X Py, be a discrete solution of the steady state

Stokes equations (1.2.54). If Assumption 4 is valid, the we have
[vally + llanllo < CIIFIl_;- (1.2.56)
PROOF. By choosing wy, = vy, in (1.2.54), we have
[vall, < CIIEll_; (1.2.57)
Since g € P,, Assumption 4 implies the existence of wj, € V;, such that

_ 1
(divw, gu) = llanlly and - [iwal, < Zllanlo (1.2.58)

17

So, by using (1.2.57) and (1.2.58),
lanlly = (div W , ga)

= (Vvy, Vw,) — (£, wy)

(1.2.59)
< (IVvallolVwally + ClIEl _ lIwally
C C
< S IEll=y + 1Vvallglignlle < Z 111 - llgallo-
B B
We thus deduce the assertion (1.2.56). n

The discrete analogue N}, of the form N (u,v,w) = {((u-V)v, w) of (1.2.5) is
defined by

((up - V)vy, wp) — % ((ap - V)wp, vi). (1.2.60)

N =

Nh(uh,Vh,Wh) =
This definition implies that N}, is skew-symmetric, that is
No(up, v, wp) = =Ny (up, wp,vy) and Ny (up, vi, vi) = 0. (1.2.61)

The following lemma can be derived from Lemma 1.2 and Holder inequality

[16, 25]:

Lemma 1.16 Let u and v be in H?(Q) with divu = 0, and let up, vy, wy, € V.

Then
Cllull, IV valloliwallg
Ni(u, vy, wp) < (1.2.62)
Cllully[1valllVwallo,
Ni(up, v, wi) < CllusllollvII [V wallo- (1.2.63)
fd<s3,
Cllanllo[lvalll[Vwallg
Ny (ap, vy, wy) < (1.2.64)
Cllanlyso) IVVallol Vwallo,
uhere [l = Vleqy + 9%l

18

In light of Lemma 1.12, we can write the inverse inequality
_d _d
Ivall < Ch~4[vally + Ch8[vall,- (1.2.65)
We derive thus the following

Lemma 1.17 Let v € H2(Q2) and let v, € V}, satisfy

v —vally < Ch% and ||v— vy, < Chs. (1.2.66)

Then
v — vl < M. (1.2.67)

1.3 Benchmark Problems

In order to compare the different algorithms that will be dealt with in the subse-
quent chapters, we consider the following model problems. All numerical experi-
ments are calculated with the finite element toolbox ALBERT of A. Schmidt and
K. Siebert [23]. All graphics are produced by MATLAB and a graphic tollbox
GRAPE [24].

1.3.1 Example: Smooth Solution

The computational domain is 2 = [0,1] x [0,1] and Re is chosen to be 1. We
choose the following exact solution of (1.1.1) and determine the corresponding

force term f(t)

e

u(z,y,t) = cos(t)(z” — 22° + ") (2y — 6y° + 4y°)

{ v(@,y,t) = —cos(t)(y® — 2¢° +y*) (22 — 62 + 427) (1.3.1)

p(z,y,t) = cos(t) <$2 +y° — §> .

\

19

In all experiments of Chapter 4 which are time independent, we choose the exact
solution (1.3.1) with ¢ = 0. In order to avoid cancellations due to mesh uniformity
and symmetry, we choose the distorted macromesh of Figure 1.1 (a) which is
further refined uniformly via bisection. Two elementary bisection operations are
shown in Figure 1.1 (b). Diagrams (a) and (b) in Figure 1.2 depict quasi-uniform
and regular meshes after 4 levels of refinement. Table 1.1 gives the relation
between refinement and finite element structure. Mesh distortion is crucial to
uncover numerical difficulties that may go unnoticed otherwise. For instance,
Gauge method is insensitive to the discrete inf-sup condition for uniform mesh
(b) in Figure 1.2. In order to check the dependency of inf-sup condition on
symmetric and equidistance mesh, we make a mesh analysis on the uniform mesh
(b) in Figure 1.2 with linear polynomial degree of velocity and pressure which does
not satisfy inf-sup condition. In order to compare numerical behavior of several
schemes, we choose the following 4 combinations of discretization parameters and
polynomial degrees (K, = polynomial degree of velocity, K, = polynomial degree

of pressure):

Case1: At=h* K,=2,K,=1.
Case 2: At=h* K,=K,=1.
Case3: At=h K,=2 K,=1.
Case4: At=h K,=K,=1.

Each algorithm shows different dependence on these combinations. As we know,
the finite element spaces of Cases 1 and 3 correspond to the Taylor-Hood family
P, — P; which satisfies the discrete inf-sup condition. In contrast, the finite

element pairs P; — P, of Case 2 and 4 do not satisfy the discrete inf-sup condition.

20

(a) (b)

Figure 1.1: (a) Macro mesh, (b) Refinement of a triangle

(a) Quasi-Uniform Mesh ~ (b) Regular Mesh

Figure 1.2: Quasi-Uniform and Regular Meshes with 4 Levels of Refinement

Since the truncation error can be split into space and time contributions, we
compute with relations At = h? and At = h. If At = h and the space errors are

O(h**1) with k > 1, then the time error O(At) dominates the calculation.

1.3.2 Example: Singular Solution

We consider the L-shaped domain

0 =((-1,1) x (=1,1)) = ((0,1] x [-1,0])

21

l}r‘fg;}ce_ Vertexes | Triangles | Edges h 2 Unk;jwns 2
3 145 256 400 | 1/8 145 545 1,201
4 545 1,024 1,568 | 1/16 545 2,113 4,705
5 2,113 4,096 6,208 | 1/32 2,113 8,321 18,625
6 8,321 16,384 24,704 | 1/64 8,321 33,025 74,113
7 33,025 65,536 98,560 | 1/128| 33,025 | 131,585 | 295,681

Table 1.1: The Relation between Refinement Level and Finite Element Structure

with reentrant angle w = 37“ at the origin. Let v = 0.544 be an approximation of

the smallest root of the nonlinear equation:

sin?(aw) — a?sin’(w)

e = 0.

The exact velocity u and pressure p for the stationary Stokes equation are given

in polar coordinates by [29]

cos(0)¢'(0) + (1 + «) sin(#)(6)
u(r, 0) = cos(t)r®

. (1.3.2)
sin(0)y'(0) — (1 + «) cos(6)y(0)
and ,
p(r,0) = —cos(t)r*™! d+e) foey v (9), (1.3.3)
where 1(0) is the function
0(0) = sin((1 +1019()Xcos(aw) — cos(1+ a)f)
in((a — cos(aw (1.3.4)
+2 (al)_H)l (ow) _ cos((a —1)0).

22

Figure 1.3: The Computational Mesh for Singular Solution

23

Chapter 2

Projection Methods

Many projection type methods have been constructed to solve NSE (1.1.1), but
most of them include structural inconsistencies and artificial boundary layers. In
this chapter, we introduce the original Chorin method and the Chorin-Uzawa
method due to A. Prohl. Our main goal is to display their performance to be

able to compare them with the Gauge-Uzawa method in Chapters 3 and 5.

2.1 Chorin Method

The original projection method was constructed by Chorin in 1968 [4, 8, 21]:
Algorithm 2.1 (Chorin Method) Start with u® = u(0).

Step 1: (Momentum Equation) Find u™*! as the solution of

=n+1l _ ..n 1
% (W V) = AT = £(f), in

(2.1.1)
u"tt =0, on 0%,

24

Step 2: (Projection step)

r n+1 _ ~n+1
4 Atu + Vp"tt =0, inQ,
{ divu™ =0, in Q. (2.1.2)
| u"t v =0, on Of).

In the projection step, we use the Helmholtz decomposition theorem to split

u"*! into its solenoidal and irrotational parts u"*! and Vp"*!. The divergence

operator applied to (2.1.2) decouples the problem into two simple equations:

1 ~
Apttt = thiv u"™ in Q, (|
2.1.3
0
a—zlj =0, on OS2,
and
u" ="t — Arvpt L (2.1.4)

n+1

By virtue of u - v = 0, pressure p automatically satisfies the non-physical

0
Neumann boundary condition 8_5 = 0. This artificial boundary condition is
responsible for a non-physical boundary layer for p. Upon plugging (2.1.4) into

(2.1.1) we also discover an inconsistency in the momentum equation

u"tt —u” _ 1 At
+ (un . V)unJrl - —Aun+1 + Vpn+1 =

- - n+1 —
N = 7 AV f(tus1), (2.1.5)

At
that is —R—AVp"+1 is the inconsistent term. Notice the presence of the operator
e
—AV, which will appear later on in our discussions.
There are several publications concerning error estimates for Chorin Algo-

rithm 2.1. The most relevant for us is Prohl [21] who employs a variational

25

approach. If o(t) = min{¢, 1} and Assumptions 1-3 hold, then [21]

Hu(tnﬂ) n+1||0 + o (tni Hp n+1) n+1” , S CAt,

Jaltuis) = 0, + Vol nsn) — 741, < OV/AL

(2.1.6)

The second paper of interest [8] is by E and Liu, who derive error estimates via
an asymptotic expansion approach: If the exact solution (u(t),p(t)) of (1.1.1) is

smooth, then
[ultnin) = w7y + VAL p(tnsr) —p, < CAL (2.1.7)

This result requires regularity which is often not valid for realistic incompressible

flows.

2.2 Chorin-Uzawa Method

Trying to get rid of the boundary layer and inconsistency of Chorin method, had
led to a number of papers [2, 18, 21]. We mention the following Chorin-Uzawa
method of Prohl [21]:

Algorithm 2.2 (Chorin-Uzawa Method) Start with given data (u°, p°, p°) such

that

|u(0) — ul, + vAEp(0) — p°||, < CAL, °=0. (2.2.1)

Step 1: (Momentum Equation) Find u"*! as the solution of

ﬁn-i—l —u

At

n

~ 1, -
+ (un) V)un+1 - EAun+1 +V (pn -]3%) = f(tn—f—l)a in €2,

u“tt =0, on 09,
(2.2.2)

26

Step 2: (Projection Step)

(un+1A_tﬁn+1 LUt o, i
{ divu"tt =0, on . (2.2.3)
"ttty =0, on 09,
\
Step 3: (Pressure Step)
ptth =t — %div "™, 0<a<1. (2.2.4)

The Chorin-Uzawa method is a combination of Chorin method 2.1 and Uzawa
Algorithm, an iterative solver of the stationary Stokes equations [1, 12]. The
relaxation parameter « in (2.2.4) must be taken sufficiently small for the iteration
to converge. Since we will prove convergence of Uzawa Algorithm for « = 1 in
Section 4.6, we can choose o =1 in (2.2.4).

Note the presence of the auxiliary pressure p™ with artificial boundary value
op"

o = 0in (2.2.3). No boundary condition is imposed on pressure p™ any longer.
v

Regardless of this improvement, Chorin-Uzawa exhibits the following pitfalls:

e Initial Pressure: The initial value p° can not be chosen arbitrarily, because

the initial error ||p(0) — p°|| enters in the priori error analysis.

e Inconsistency: Upon plugging u"*! = u"*! + AtVp™"*! from (2.2.3) into

(2.2.2), we see that

un+1 — N S " a/\t 1
1 n+1 At ~n+l sn+l =n (2.2.5)
—p-Au + (a—1) Too VAD +V (" =) = f(tns1)-

27

al\t

Since (2.2.3) and (2.2.4) imply p"*! = p" — ﬁAﬁ““, we end up with
un-l—l —u" i1 1 1
n n) — A n+1
At + (" -V)u"m + Vp F
A (2.2.6)
+(a—-1) EVAFLH +V (@ = D") = f(tara)
At ~n+1 ~n+1 ~n\ : : :
Here (o — 1) EVAP + V (p"*' = p*) is the inconsistency term. If we

choose o = 1 as in Section 4.6, then the first disappears but the second still

remains.

e Regularity: The following regularity assumption of the exact solution (u, p)

of (1.1.1) is used in the error analysis for both velocity and pressure of [21].

sup ([[Vuy(s)llo + llpe(s)llo) < C- (2.2.7)

0<s<T

The following a priori error bound is stated by Prohl [21]: If Assumptions 1-3
and (2.2.7) hold, then

|u(tnsr) —u™ |+ VA p(tnsr) —p"H|, < CAL (2.2.8)

We note that assumption (2.2.7) is required by the reason why the exact solution
may not satisfy (1.2.13), ||Vu(0)||, < C. Also Lemma 1.2.9 is satisfied automat-
ically without o(¢) under the assumption (1.2.13). Therefore we may say that
assumption ||Vu,(0)||, < C is equivalent with (2.2.7). As we said in Remark 1.8,

we do not these assumptions to estimate velocity.

28

2.3 Numerical Results for Chorin and Chorin-

Uzawa Methods

In this section we present a number of simulations using both the Chorin method
and the Chorin-Uzawa method. Our aim is to compare they performance for
both velocity and pressure in L%(Q) and L*®(Q2), and several combinations of

finite element spaces.

2.3.1 Experiments with P, — P, Elements

We take polynomials of degree 1 for both velocity and pressure. This combination
does not satisfy the discrete inf-sup condition. The errors of Chorin method
decrease in Figures 2.1 and 2.4. This indicates that Chorin method is insensitive
to the inf-sup condition. In contrast, the pressure error of Chorin-Uzawa in Figure
2.1 with At = h? does not converge to 0. So Chorin-Uzawa is sensitive to the
inf-sup condition. A plausible explanation for the pressure error in Figure 2.4 is
that the time discretization error dominates the space discretization error. The
conclusion of these experiments is that the Chorin method seems to be insensitive

to the discrete inf-sup condition, but that the Chorin-Uzawa method does not.

29

Velocity in L2 . Velocity in L

107 10
- 1.97
-3 -3
§ 10 § 10
v w
S S
g g
—10™ J107™ N
©
10” 2 3 4 5 10” 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
. Pressure in L2 0 Pressure in L*
10 10
S S
g, b
5 10 5 10
D D
o o
i})
-©- 1.59 -©- 0.90
-O- 0.00 -O- -0.06
10_3 2 3 4 5 10_2 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 2.1: Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method

(Dashed) with At = h? and P, — P, Elements.

30

Figure 2.2: Error Functions for Chorin Method with At = h? and P, — P,
Elements (DOF = 24,963).

Figure 2.3: Error Functions for Chorin-Uzawa Method with At = h? and P, — P,
Elements (DOF = 24,963).

31

> Velocity in L2
10
= [CO
o ~
TR ~o.
% 10 ~ .
g o
-©- 0.77
-O- 0.98
107
10° 10* 10°
Log of DOF
o Pressure in L2
10
-©- 0.65
-O- 0.93
-1
g 10 9\@\\
1 G
S T oo
g) Tt~ ©
i} 10 -~ _ 1
T {
10°
10° 10* 10°
Log of DOF

-1

Velocity in L

10
—-©- 0.75
-O- 0.99
-2
5 10 9\@\@\
iy S~
] O~ _ -
g O~ _
- 10 T~ 4
10_4 4 5
10 10 10
Log of DOF
. Pressure in L*
10
—-©- 0.35
-O- 0.84
5
i
ks
D
S
10" - ;
10 10 10
Log of DOF

Figure 2.4: Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method

(Dashed) with At = h and P, — P, Elements.

32

Figure 2.5: Error Functions for Chorin Method with At = h and P, — P; Elements
(DOF = 24,963).

Figure 2.6: Error Functions for Chorin-Uzawa Method with At = h and P, — P,
Elements (DOF = 24,963).

33

2.3.2 Experiments with P, — P, Elements

We take polynomials of degree 2 for velocity and degree 1 for pressure. This is
the so called Taylor-Hood family which satisfies the discrete inf-sup Assumption
4. Figure 2.7 shows the error decay for both methods and reveals that Chorin-
Uzawa is more accurate. Figures 2.8 and 2.9 display the error functions for both

methods. Figures 2.7-2.9 correspond to the relation At = h? whereas Figures

2.10-2.12 repeat the experiments with At = h.

s Velocity in L2 5 Velocity in L
10 T 10 -
-©- 1.95
-3 -3
§ 10 § 10
v i
© S
D D ~
o -4 o —4 IS
-110 —10 >
~O
10° 3 4 5 10° 3 4 5
10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 0 Pressure in L™
10 T 10 :
-©- 0.91
-O0- 1.77
510° 510" i\\@\@\@
i i -
© S > o
o o N
o 3 [S R Y
-110 —110 ~ _
)
10" 3 4 5 10° 3 4 5>
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 2.7: Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method

(Dashed) with At = h? and P, — P, Elements.

34

Figure 2.8: Error Functions for Chorin Method with At = h? and P, — P,
Elements (DOF = 74,371).

Figure 2.9: Error Functions for Chorin-Uzawa Method with At = h? and P, — P,
Elements (DOF = 74,371).

35

> Velocity in L2
10
= €N
2 SO
(T ©
%5 10 N N
8’ @ ~
— ~N
~O
-©- 0.77
-O- 0.98
10_4 3 4 5 6
10 10 10 10
Log of DOF
o Pressure in L2
10
-©- 0.65
-O- 0.97
-1
5 10 Q\S\S\@
I G-
‘S =~
2 °~
21072 Os
)
10_3 3 4 5 6
10 10 10 10
Log of DOF

Figure 2.10: Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method

-1

Velocity in L

10
—-©- 0.75
-O- 0.99
S 10 ? Q\@\@\@
= Y
Ll >~ -
5 S~
g -3 O~
- 10 \O
107
10° 10" 10° 10
Log of DOF
. Pressure in L*
10
2__2\8\@
S T~
i = T -~
5 10 @)
D
S
—-©- 0.35
-O- 0.76
10_2 3 4 5
10 10 10 10
Log of DOF

(Dashed) with At = h and P, — P, Elements.

36

Figure 2.11: Error Functions for Chorin Method with At = h and P, — P,
Elements (DOF = 74,371).

Figure 2.12: Error Functions for Chorin-Uzawa Method with At = h and P, — P,

Elements (DOF = 74,371).

37

2.3.3 Experiments for Chorin-Uzawa with P, — P, Ele-

ments on Regular Mesh (b) in Figure 1.2

The purpose of this experiment is to inspect whether the Chorin-Uzawa method
depends on the inf-sup condition under regular mesh. The Figure 2.13 show that
the error of pressure for Chorin-Uzawa method is not decreasing even on regular
domain the same as Figure (2.1). Thus we conclude that Chorin-Uzawa method
is sensitive to the discrete inf-sup condition. In contrast the gauge method in
Chapter 3 does not depend on discrete inf-sup condition in the regular mesh

(compare with Figure 3.25).

2.3.4 Example : Singular Solution

We perform the example 1.3.2 including a singular pressure p at the reentrant
corner on domain Figure 1.3. We employ the Taylor-Hood finite element combi-
nation. The error of Chorin-Uzawa method is not uniformly decreasing in Figure
2.15 as decreasing mesh size, and it seems to relate with the pick of velocity at
the reentrant corner in Figure 2.16. Even though the errors of Chorin method
are decreasing at a uniform rate, the pressure at reentrant corner Figure 2.17
looks smooth in contrast with exact pressure. Comparing with the results of
Gauge-Uzawa method in Figures 5.11 and 5.12 makes us recognize how the small

inconsistencies 2.1.5 and 2.2.6 are crucial problem.

38

S Velocity in L2

10
S
oo
% 10
D
o
—

10_5 2 3 4 5

10 10 10 10
Log of Dof
o Pressure in L2
10
—©- 0.03

S
oo
% 10
D
o
—

10_3 3 4 5

10 10 10 10

Log of Dof

Velocity in L

10"
-3
§ 10
i
©
g
—10™
1075)
10 10
Log of Dof
. Pressure in L*
10
S
[T
e x/é*/@
D
(o]
-
-2
10 3 4 5
10 10 10 10

Log of Dof

Figure 2.13: Error Decay of Chorin-Uzawa Method with At = h% and P, — P,

Elements on Regular Mesh (b) in Figure 1.2.

39

Figure 2.14: Error Functions of Chorin-Uzawa Method with At = h? Chorin-
Uzawa Method with At = h and P; — P; Elements on Regular Mesh (b) in

Figure 1.2 (DOF = 24,963).

Velocity in L2 Pressure in L2

10"

-6~ 041 -6 035
-0- 0.47 ~O- 0.68

10°

Log of Error
=
o\
Log of Error
(=
o
)
®
/
/
I
6]
\
\
\
\
o}
/
/
/
/
9]

-2 I I 1071 I I
2 3 4 5

10 10° 10* 10° 10 10 10 10
Log of DOF Log of DOF

10

Figure 2.15: Error Decay of Chorin Method (Solid) and Chorin-Uzawa Method

(Dashed) with At = h and P, — P; Elements.

40

Figure 2.16: Numerical Solution of Chorin-Uzawa Method with At = h and
P, — P, Elements (DOF = 83,903).

Figure 2.17: Numerical Solution of Chorin Method with At = h and P, — P,
Elements (DOF = 83,903).

41

Chapter 3

Gauge Method

E and Liu [7] proposed the gauge formulation of the incompressible Navier-Stokes
equations along with the gauge method, which results from time discretization
of the gauge formulation. In this chapter, we introduce 4 time-discrete gauge
methods, study their properties, prove error estimates, and display some advan-
tages and disadvantages of them. This study gives rise to the basic concept of

Gauge-Uzawa method, which will be studied in Chapter 5.

3.1 Motivation of Gauge Method

The gauge formulation can be derived by introducing the gauge variable ¢ and

the auxiliary field a = u— V¢. Then the momentum equation of (1.1.1) becomes

1

»-la=f. (3.1.1)

at—i-(u-V)u—l—V(qbt—éAgb—i—p)

If we impose

1
b= Db =p, (312)

42

we end up with the gauge formulation,

.
1

at—lr(u-V)u—EAa:f, in Q,
a=u-— VQS, in Q,

{ (3.1.3)
divu =0, in €2,
O — iAqﬁ =— in Q
t Re =D, -

\

To derive an equation for ¢, we apply the divergence operator to a = u— V.
The incompressibility constraint divu = 0 in (3.1.3) becomes —A¢ = diva. So

(3.1.3) changes into the gauge formulation of NSE due to E and Liu [7], namely,

.
1

at+(u-V)u—§Aa:f, in Q,
—A¢p =div a, in €2,

< (3.1.4)
u=a+ Ve, in €2,
[0} ! AN in
1= oD =1, in Q.

\

In two space dimensions, we can also apply the rotation operator to both sides
of a =u— V¢ to get rot a = rot u. Since divu = 0 and u = 0 on 02, there

exists an unique stream function v such that [12]

curly = u, in €,
(3.1.5)
Y =C, a—wz(), on 0f).
ov

The boundary value C' in (3.1.5) can be chosen by simply 0 in connected domain.

Finally, exploiting properties of rot and curl in (3.1.5), we get

— /A1 = rot curl ¢y = rot u = rot a.

43

Combining the above formulas with the gauge momentum equation, we can obtain

a novel gauge formulation:

(

1
at—l—(u-V)u—EAa:f, in Q,
—/A1 =rot a, in €,

0
¢ = O’ —w = O’ on 89,
ov
X (3.1.6)
u = curl v, in Q,
Vo=u—a, in €,
10) ! yANG) in €
—-p=q¢ — — in Q.
\ p t Re)

The main advantage of these gauge formulations is the freedom of choice of
boundary conditions for the non-physical gauge variable ¢ without degrading the
approximation of p. This is reflected in the fact that ¢ is smoother than p, since ¢
is a solution of the heat equation with forcing term —p. To enforce the boundary

condition u = 0, we can either prescribe

09 _ _ 09
- 0, a-v=020, a-7= , (3.1.7)

or

¢ =0, a-v=——_ a-7=0, (3.1.8)

where v and 7 are the unit vectors in the normal and tangential directions,
respectively. We call (3.1.7) the Neumann formulation and (3.1.8) the Dirichlet
formulation.

Wang and Liu show in [30] for the backward Euler time discretization of

1

(3.1.4), that velocity is of order 1 for the Neumann formulation and of order 3

for Dirichlet formulation. Since [30] is based on asymptotic analysis, the exact

44

solutions are assumed to be sufficiently smooth, a rather strong and unrealistic
regularity requirement. In addition, [30] does not address the convergence of
pressure, which is the most sensitive variable. We use, instead, a variational
technique to get optimal rates of convergence for both velocity and pressure
under realistic regularity assumptions on data. A distinctive aspect of our study
is the assessment of pressure convergence. Since pressure is obtained through
differentiation of ¢, the boundary conditions (3.1.7) and (3.1.8) play a central
role. We explain in Section 3.2 that the Dirichlet condition (3.1.8) entails a
rather strong compatibility condition on data for convergence of pressure. In
contrast, the Neumann condition (3.1.7) always leads to pressure convergence;
this issue is discussed in Section 3.6. Furthermore, we introduce a semi-implicit
scheme and show that it is unconditionally stable in Section 3.3. This extends

applicability of the gauge method to high Reynolds numbers.

3.2 Time Discretization and Algorithms

We consider the backward Euler time discretization of gauge methods (3.1.4) and
(3.1.6) with both Neumann (3.1.7) and Dirichlet (3.1.8) conditions. In order to
decouple the calculation of a"*! and ¢"*! at time step n + 1, it is necessary to
extrapolate the boundary conditions from the previous time step. This extrapola-
tion is responsible for a boundary layer, and a compatibility condition associated
with the Dirichlet formulation. We first introduce two algorithms which use a

Neumann boundary condition.

Algorithm 3.1 (Gauge Method (3.1.4) with Neumann Condition (3.1.7)) Start

with initial values ¢° = 0 and a° = u°® = u(x, 0).

45

Step 1: Find a™*! as the solution of

A" A V)t — LAt = £(t,,), in ©
: - = n , WAL,
At Re i 32,1
i 3.2.1
a*tt.y=0, a"l'.r= _9¢ , on 052,
or
Step 2: Find ¢™*! as the solution of
—A¢" =diva™, in Q,
n+1 (322)
0 =0, on 01,
ov
Step 3: Find
u = amtl £ Vet in Q. (3.2.3)

Algorithm 3.2 (Gauge Method (3.1.6) with Neumann Condition (3.1.7)) Start

with initial values ¢° = 0 and a° = u° = u(x,0).
Step 1: Find a™! as the solution of (3.2.1)

Step 2: Find "' as the solution of

— APt =rota™t, in Q,

(3.2.4)
Yt =0, on 0%,
Step 3: Find
u™™! = curl ", in Q,
(3.2.5)
Vot =y —antl i Q.
One may compute the pressure whenever necessary as
n+1 n
n+1:_¢ _¢ LA n+1 326
D A + Toe (1 (3.2.6)

46

Remark 3.1 (Boundary Condition) In Algorithms 3.1 and 3.2, the boundary con-

dition of velocity u™*! is

ntl dp™tt og"
or or

cv=0, u

on J€. (3.2.7)

Note that u™*! - 7 is not zero because of the extrapolated boundary condition

a ()
a"tt.r = — ¢ . In order to reduce the boundary layer in (3.2.7), we can use
T
o™ 0 n—1
order 2 extrapolation a"t! .7 = —2 ¢ + ¢ [7].
or or

Algorithm 3.3 (Gauge Method (3.1.4) with Dirichlet Condition (3.1.8)) Start with

initial values ¢° = 0 and a° = u® = u(x, 0).

Step 1: Find a™*! as the solution of

A" A V)t - L Aamt — £(t,,), in ©
: - = n , WAL,
At Re o ()
n 3.2.8
a"“-z/:—ad) , a7 =0, on 01,
ov
Step 2: Find ¢™t! as the solution of
— A" =diva™™, inQ,
(3.2.9)
"t =0, on 02,
Step 3: Find
u"tt = a4+ Vet in Q. (3.2.10)

Algorithm 3.4 (Gauge Method (3.1.6) with Dirichlet Condition (3.1.8)) Start with

initial values ¢° = 0 and a° = u® = u(x, 0).

Step 1: Find a™*' as the solution of (5.2.8).

47

Step 2: Find y"t! as the solution of

— APt =rota™t, in Q,

ntl (3.2.11)
o =0, on 051,
ov
Step 3: Find
u"™ = curl ", in §Q,
(3.2.12)

Vot =u™! —a"*tl in Q.

Remark 3.2 (Boundary Condition) In Algorithms 3.3 and 3.4, the boundary con-

n+1

ditions of velocity u™*" are

61/}n+1 6¢"+1 a¢n
n+l . _ — _ n+
v v or ov ov '’ v

'.7=0, on 9. (3.2.13)

On the other hand, after adding a suitable constant, "' = 0 on 9 in Algorithm
awn—i—l

14

= 0 on 99. Consequently, ¢"*! of Algorithm 3.4 satisfies

3.4. because of

(3.2.9).

Remark 3.3 (Compatibility Condition) Upon integrating both sides of (3.2.9) and

using (3.2.8), we uncover the relation

n+1

/ AgHidx = / 00" ar = — / ™t . ydr
ov

Q

0N 0N

/ﬁwﬂ /Aww

0N

(3.2.14)

for both Algorithms 3.3 and 3.4.

This means that fQ A¢™dx is a constant for all time steps mn, a property not
generally valid. So, we cannot expect the numerical solution ¢™ to converge to

the exact solution ¢. Since pressure p" and ¢" are linked via (3.1.2), we cannot

48

expect convergence of p™ to p. Therefore, Algorithms 3.3 and 3.4 cannot be used
for calculating pressure p. However, the velocity u™*! converges to exact solution
u with a rate O(y/At); see Section 3.5.

All these Algorithms 3.1-3.4 have the stability constraint CAt < i which
limit their applicability to small to moderate Reynolds numbers. This will be
proved in Section 3.3.1. These algorithms become unconditionally stable upon

treating the convection term in the momentum equation semi-implicitly, namely,

1

an—|—1 —an "
— ol =1f(tas). (3.2.15)

n n+1 n no_
N + (u"-V)a" + (u"-V)Ve

A proof is given in Section 3.3.2. We note that the formula (3.2.15) is still linear.

3.3 Stability

In this section, we examine the stability of Algorithms 3.1-3.4 and their semi-

implicit variants. Algorithms 3.1-3.4 have the stability constraint CAt < ﬁ
which limit their applicability to small to moderate Reynolds numbers; this is
proved in Subsection 3.3.1. In Subsection 3.3.2, we prove that these algorithms
become unconditionally stable upon treating convection semi-implicitly in the

momentum equation (3.2.15).
Since the time discrete function u™*! does not vanish on the boundary, it
on+l

cannot be used as a test function. So we introduce the auxiliary function u

which is 0 on the boundary 0€2:
A" = a"t + Ve (3.3.1)

In view of the boundary conditions (3.2.7) and (3.2.13) of u"*! for the Neumann
and Dirichlet conditions of ¢"*!, respectively, we can easily get the following

useful properties:

49

Lemma 3.4 Let n and m be non-negative integers. For both Neumann and

Dirichlet boundary conditions, the following properties of U™ and u™ are valid:

u" =0, ondQ, (3.3.2)
ﬁn—H — an+1 4 V¢n — un—|—1 - V(¢n+1 . ¢n)’ (333)
(u", V™) =0, and (G",u™) = (u", u™). (3.3.4)

3.3.1 Explicit Convection Scheme

In order to estimate the convection term, we need to assume that the numerical
solution is bounded in L°°(€2). This is a customary but rather strong assumption,

which is removed in Section 3.3.2

Theorem 3.1 Suppose

oA [0 o0 () < M. (3.3.5)

If Assumptions 1-8 hold, and the stability constraint for the Algorithms 3.1-3.4
2M?ReAt < 1 (3.3.6)

1s enforced, then the following a priori estimates are valid

At N .
[l + S lad™ g+ 4—367;”% 1
N (3.3.7)
< [0y + CReAE Y E(tns) 12,

n=0
PROOF. By definition of u”™! and 4"*!, the momentum equations for all explicit
schemes can be rewritten as follows:

utl —u V(-9 1
— —— A@"T VYo" = —(u"- "+f . (3.3
AL A7 e (u V") (u"*-V)u"+£(t,41). (3.3.8)

90

We now multiply by 2A¢4"*! € H}(Q2) and use Lemma 3.4 to get

[J7 = [ff + [t —) + 2| V(e = 6™)s

PYAN PYAN;

antl||2 n ‘o ontl ~n+1
+ o[VETl) = = (A", div BT + 288 (f(t), B) (3.3.9)
—2AtN (U™, u”, 0" = A + Ay + As.
In view of Lemmas 1.9 and 3.4, we have ||A(¢™! — ¢")||§ = ||div ﬁ”““g <

Va1 ||2) whence

A
A= (B A - 6)
A
= o (laeo -1t - |a@+ -l (3310)

At . . Nty
< -2 (2™ = lag }) + - [var |

Clearly,
Ay, < C’At||f(tn+1)||_1Hﬁn+1H1

At (3.3.11)
< CReA|f(tos) 2, + 1] VA5

Since ((u™ - V)u"*t, u”) = ((u™ - V)u"™', u" — ") and in light of (3.3.3) and
(3.3.4), u" —u""! = (u" —u"") + V(4" — ¢") is an orthogonal decomposition

in L%(2), we have

Ay = 28t {(u*-V)a"t, u" - a"t!)

IN

2 A N M i

(3.3.12)

IN

2ReM At ([urt - |+ | V(e — 6|2

At =nt1]|2
+5 el VE o

o1

Inserting (3.3.10)-(3.3.12) back into (3.3.9), we get
a2 = a2+ 2 (a6 2~ 186012) + ok war
+(1 — 2ReM?At) (Hun+1 —u"||; + |V (" - ¢”)H§) (3.3.13)

< CReAt|[f(tas1)|%,-

If the stability constraint (3.3.6) hold, then by adding over n from 0 to N, we
obtain (3.3.7). n

3.3.2 Semi-Implicit Convection Scheme

By definition (3.3.1) of 4", the momentum equation (3.2.15) of Algorithms
3.1-3.4 can be rewritten as

amt! — an N 1 _

EYNEE +(u" - V)artt - ﬁAanH = f(tn41), in Q. (3.3.14)
Upon multiplying (3.3.14) by 4" *!, the convection term becomes N (u”, u"*!, 4" !) =
0 because of Lemma 1.3. This is in striking contrast with Theorem 3.1 and the

reason for removing assumption (3.3.5).

Theorem 3.2 The scheme (8.3.14) is unconditionally stable for both Neumann
and Dirichlet boundary conditions in the sense that for all At > 0 the following

a priori bound holds:

N

A
> (I = oy + et w2 v)

n=0

N . (3.3.15)
24 D a0 2 < [0+ OBt [t

n=0

52

PROOF. Since u"™! = a"™! + V¢"*! and U™ = a"! + V¢", the momentum
equation in (3.3.14) can be rewritten as

un—|—1 —u® B V(¢n+1 _ ¢n)
At At

+ (u"- V)urt!

. (3.3.16)

— DT = V") = £(t).

We now take the inner product of (3.3.16) with 2Atu"*! € H{(2), and use

Lemma 3.4 to get

g = Hhollg + ot = w” g+ 2| v (6" = 6™

+2At
Re

(3.3.17)
[var = QR—A; (A", diva™™) + 24t (£(tnen), T

The convection vanishes by Lemma 1.3. On the other hand, proceeding as with

(3.3.10) and (3.3.11) gives us
ol = ol ™ = wfy + 2 967+ — 6"

At At . .
+2—Re||Vu |2+ P (HAqs L~ (| ag ||§) < CReAt||f(tns)|” -

On adding over n from 0 to N, we obtain (3.3.15). n

3.4 A Priori Error Analysis for Velocity of Al-
gorithms 3.1-3.2 with Neumann Condition

In this section, we carry out the error analysis for velocity of Algorithms 3.1-3.2,
which employ Neumann condition. We first prove that the convergence rate of
velocity is of order %, and then we improve the rate to order 1. We examine the

semi-implicit momentum equation (3.2.15) in subsection 3.4.1 and the explicit

93

convection in subsection 3.4.2. Since only the convection term is different be-
tween explicit and semi-implicit schemes, we just estimate the convection term
in subsection 3.4.2.

We postpone the study of Algorithms 3.3-3.4 with Dirichlet condition until
subsection 3.5, because of the orthogonality property (Vg, u™) = 0.

Let (u(tpy1), p(tns1)) be the exact solution of (1.1.1) at the time step 1.
Let (u™!,p"t! a™t!l ¢"*1) be the numerical solution of any of the Algorithms

3.1-3.4. We will use the following notations:
E" = u(tyy) —u"t, B = u(ty) — ot et = p(tg) — pttL

We note again that U"*! = 0 on 0Q and div a™*! # 0 in , whereas div u™*! = 0
in Q and u"*' = V(¢"! — ¢") # 0 on IQ. The following lemma can be proved

directly by invoking Lemma 3.4:

Lemma 3.5 (Properties of error functions) Let n and m be non-negative integers.

For both Neumann and Dirichlet boundary conditions, we have

div E"*! =0, (3.4.1)

Entl =0, on 0%, (3.4.2)

En+1 — En+1 + v(¢n+1 _ an)’ (343)

(E", V¢™) =0, and <E" Em> — (E", E™). (3.4.4)

Using Lemmas 1.9 and 3.5, we have the following lemma:

Lemma 3.6 (Additional properties of Error Functions) For both Neumann and
Dirichlet boundary conditions, we have

2

. (3.4.5)

I8 (7 = o)l = o B < [vBr

54

~ 2
[E=], = B e+ 11V (6% = 6o (3.4.6)

and

2

o <o (|08 + o 6 - e 2) s vl @)

We note that Lemmas 3.5 and 3.6 are satisfied also for Algorithms 3.3-3.4 with

Dirichlet boundary condition.

3.4.1 Semi-Implicit Convection Scheme

In this subsection, we consider the semi-implicit momentum equation (3.2.15).
We show that the numerical solution u™*! of Algorithms 3.1-3.2 is an approxima-
tion of order 1 to the exact solution u(f,41) in L*(Q2) (Theorem 3.3). In Theorem
3.4, we improve the rate of convergence of Algorithms 3.1-3.2 to orders 1 weakly
in L?(Q) and strongly in Z*, respectively. The result of Theorem 3.3 is crucial to

prove Theorem 3.4.

Theorem 3.3 If Assumptions 1-3 hold, then the error functions of Algorithms
3.1-3.2 are bounded by

2

N2 At N+1[|2 ﬁNH Bn+1
[, +atas+ 3|V

(3.4.8)

N
+Z (||V(¢n+1 _ ¢n)||§ + HEn+1 _ EnH(Q)) < OAtL
n=0

PROOF. By virtue of the Taylor theorem for the exact velocity u(t), we get

u(tny1) —u(ty)
At

+ (u(tn+1) : v)u(tn-l—l) + Vp(tn-f—l)
, (3.4.9)
—ﬁAU(tnﬂ) =Rup1 + f(tnt1),

95

1 tn+1
~ / (t — tn)uy(t)dt is the truncation error. By subtracting

(3.3.16) from (3.4.9)

where R,,11 =

Ertl — Er v(¢n+1 _ ¢n) 1 ~ 1
_ —A n+l - n
At + At Re B ReVAq5
(3.4.10)

=Rot1 — Vp(tn1) — (U(tns1) - V)u(tngr) + (0 - V)@

Multiplying (3.4.10) by 2AtE™! € H}(1), and invoking Lemma 3.5, (3.4.10)

becomes

[E o — B [lg + | B — En||) + 2| V(6" — ¢™);

lo
2At

HVE"+1 — 271 <Rn+1 , E"+1>

0

=~ PYAN
: n+1 n n+1
+2At <p(tn+1)a div E + > R€ <A¢ leE + > (3‘4'11)
=20 (N (ultnss), ultnsr), B = N (u?, @4, BH))

=A +A+A3+ Ay

Since we get, by Holder inequality,

2

) 1 tny1 tnt1
Realy < Ogg| [=t [=t o
n 0
- 2 (3.4.12)
< c/' o (8) s (D)2,
tn
we deduce from (3.4.6)
A < CAt||Rn+1||OHf)”+1
0
tn+1 9
< CAp/ o (1) e (1) 2t (3.4.13)
tn

oot (|[E o+ [V =65

o6

By using Lemma 3.5 and the boundary Values ((/5"+1 ¢™) = 0, we obtain

A2 = 2At <p(tn—|—1) y A(¢n+1 - ¢n)>
= 20t (Vp(tus), V(g™ = ¢™)) (3.4.14)

< CAB|Vptan) 2+ [V (6™ — 67)|%

We stress (3.4.14) is not valid for Algorithms 3.3-3.4 because of ((/5"+1 o™) # 0.
Making use of Lemmas 3.5 and 3.6, we arrive at

A
A3 — _E<A¢n (¢n+1_¢n)>

A
I (1 i P = PN e DY PR e

At n+1]|2 n|2 At Sn+1 2
< =2 (ol - lagty) + o [vE|

We split the remaining term A4, the only one dealing with convection, as follows:
Ay = —20IN (utnsr) — ultn), utng), EM)
—2AIN (E™ u(tnsr), BT — 246N (0", B B (3.4.16)

= Ay + Aso+ Asgs.

Lemma 1.3 yields A43 = 0. The vanishing of A4 3 is crucial to avoid boundedness
of the numerical solution u®. We now resort to Lemmas 1.3 and 1.4 to estimate

Ay. Since ||u(tp41)]|, < M by Lemma 1.5, we get

Ay < CAtllutng) — altn)llof[ultni)ll,

’ (3.4.17)

tnt1
< CReAtZ/t ||ut()||0dt—|— ‘VE”“ O

o7

as well as
Agy < CALE|llutna)ll,

)

VE”+1
0

(3.4.18)

2

At =
< CReAt||E”||§+@‘VE"+1

.
Inserting (3.4.17)-(3.4.18) into (3.4.16) yields

2

tnt1 At || _~
Ay < CReAtZ/ || (t)||5dt + CReAt||E™||2 + e ‘VE"“ .
tn

(3.4.19)

Replacing (3.4.13)-(3.4.15), and (3.4.19) back into (3.4.11) implies

By = B+ B =B+ [V(e = ")

2

At n+1||2 nl|2 At an+1
+ 20 ([aem1ls = lagl) + 5| VE

0

< ont([[E+ (V™ = ¢")s) + CReA|E"; (3.4.20)

tnt1
+COP|Tplta)l + CReAE [)
tn
tn+1
+CAt / o (1) |Jug (1) || 2dt.
tn

Summing over n from 0 to NV,

N2, Ot N1z, At - H o |2
[+ B+ k0B

N

N
+3 (It = gn)ls + B —B"[5) < CRenst Y B
n=0 n=0

(3.4.21)
N N

+Cnty ([o+ (V@ = 6)];) + CAE Y IVp(tas)ll;
n=0

n=0

tN41

N1
L CReA? / lus(0)|2dt + CAL / o (1) e (1) 2.

Finally, by the discrete Gronwall lemma and Lemma 1.5, we prove (3.4.8). [

We observe that constant C' in (3.4.8) depends exponentially on the Reynolds

o8

number Re. We also note that the suboptimal order % of Theorem 3.3 is due to
the pressure of || Vp(tn+1)ll in (3.4.14) and CAt [o(t)||ug(t)[|3dt in (3.4.13).
To improve the convergence rate we must get rid of these terms. This is precisely
over next task. The main idea to obtain an error estimate in L?(L?) is to invert
the main elliptic operator or, equivalently, multiply by a divergence free test

function satisfying the Stokes equations. Let (v"*! ¢"t1) € H}(Q2) x L2(2) be a

solution of)

—AV"T L Vgt = EMT in Q,
! divv*tt =0, in Q, (3.4.22)

vl =, on 0f).

\
In view of Assumption 1, (v*™ ¢"*!) € H*(Q) x H'(Q) are strong solutions of

(3.4.22) and satisfy
el + fla™ I, < OBl (3.4.23)

In particular, v**! satisfies the orthogonality (v*™!, Vp) = 0, for all Vp € L?(Q).
Since div E"*! = 0, which is stated in Lemma 3.5, we know (E"*! V¢"*!) = 0,
provided E**! . v = 0; this is the case of Algorithms 3.1 and 3.2 with Neumann
condition. Now, we prove that the velocity error in Algorithms 3.1-3.2 is of order

1 weakly in L?(Q2) and strongly in Z*.

Theorem 3.4 If Assumptions 1-3 hold, then the velocity error functions of Al-

gorithms 3.1-3.2 satisfy

N
[BY . + YO[B B,
n=0
(3.4.24)
At = 2 n41 2 2
) (1Bl + [[) < ar2ee

99

PROOF. Multiplying (3.4.10) by 2Atv™! € H} () gives us

VAN AP
2(E" B, v 4 S <VE“+1, Vv"+1> =2At (Ryyq, V')
(3.4.25)
2NN (u(tpi1), u(tnygr), v + 2AtN (™, ", v,
Invoking (3.4.22), the leftest term can be treated as
2(Ertt —E" vty = 2 <V(v"+1 —-v"), Vv”+1>
) \ (3.4.26)
= |Vl = 119V llg + IV = v,
whereas the next term can be written as, with the aid of Lemma 3.5,
PYAN AR PYAN
SO [+t n+1> <En+1 Ertl _ n+1>
Re (VE, v Re Ve
2At oA (3.4.27)
||En+1”0 R < (¢n+1 ¢n), an+1>'

Here we have the orthogonality (E"*! Vg) = 0, which is valid for Algorithms
0

3.1 and 3.2 because E"™ - v = 8—(;25“rl — ¢") = 0. Collecting the above results,
v

(3.4.25) becomes

PYAN
Vvl = 19V llg + [V (v = v g+ S B
= 20t (Rt , v + Met <E"+1, Vq"“>
(3.4.28)
+2A¢ (N (u", @, v = N(u(tnn), ultns), v'™))
= A1 + A2 + Ag.
Since v € Z(Q), we readily have
tnt1 9 9
A < CAt2/ ||utt| Z*dt-i- CAtHVVTH'lHO. (3‘4'29)
tn

60

In view of (3.4.23), we get

A, = QAt < (g™ — o™ n—|—1>
< %n R A
- 0 2Re 0
The convection term Az can be rewritten as follows:
Ay = —2AtN(ER, @, vt
—2AtN (u(tyq1) — u(ty,), a™ ™, v (3.4.31)

—2AtN (u(tpyq), E”+1, vl = Az + Aszp + Az

We now proved to estimate each term in (3.4.31) respectively. We first note that

Ag; = 20N (E" ErHL v

(3.4.32)
—QAtN‘(En, U(in+1), Vn+1) = A3’1,1 + A371,2.
Since Theorem 3.3 yields ||E"||, < CAt?, using (3.4.23) we get
Agiy < COHEo||VE| v+,
0
< CAt:||VE"! I (3.4.33)
2 n+1 n+1
< CReA#||VE" H SRQHE P2,
Since Lemma 1.5 gives ||[u(t,41)]|, < C, we easily deduce
Aspz < COUEgllultas)ll][Vv
3.4.34)
At n+1]|2 n+1 n||2 n+1(|2 (
AL ()2 + B2 = B72) + CReat v
On other hand, we shift A3, as follows
Azs = 20N (u(tnrr) — u(ty,), En vt
(3.4.35)

—QAtN(U(tn+1) — U(tn), U(tn_|_1), Vn+1) = A3’2’1 -+ Ag,g’g,

61

and make use again of ||u(t,41)|l, < C to obtain

Aszor < CAtu(tpsr) —ult,)], van-l—lHO
(3.4.36)
n+l n+1
< 8ReHE +CReAt||Vv I
Likewise,
Aszoo < CAt||11(tn+1)—u(tn)||0||u(tn+1)||2van+1HO
(3.4.37)

tn+1
< cM/t " w02t + CAt| Vv

Since div u(t,4+1) = 0, we exchange the last two arguments of Az 3 to write

Asy < CAtu(tns)ll, van+1H0
(3.4.38)
n+1 n+1
< SReHE + +CReAtHVv 2,
Inserting (3.4.32)-(3.4.38) into (3.4.31) yields
~ 2
E"! — E"||2 + CReAt?| VE™!
2ReH 8Re” ||0+ ‘ v 0
(3.4.39)

tn+1
+0ReAt||vvn+1|\§+cM / " wa0)2dt.

n

—~ 2
Since HE"“ = [E™2 + [|[V(¢™*! — ¢™)||, combining (3.4.20)-(3.4.30) with
0

(3.4.39) leads to

At
(Ve g = 199 llg + [V = v g + o [g

CA
< CRet||Vv n+1H0+—t (Wt = omls + B = E[}) (3.4.40)

~ tn+
+CReAt2HVE"+1HO +0At2/ (llugellz. + lus(2)]]2) dt
tn

62

On adding over n from 0 to N, and recalling that v® = 0,

v +éHV (vt =)+ Z loR

N
< CReAtZ|\VV"+1|\§+0ReAt2ZHvEnH i
n=0 n=0

0

CAL &
5D (19 (& =)o+ [|B — B[]y

n=0

CAt? . 2 D% dt
+ ; ([luellz- + lue(®)]l5)

Combining the weak estimate

1 N

LS (v —)2+ [- Er))

n=0

N
~ 2
+Atz HVE"+1) < MAt.

From Theorem 3.3 with Lemmas 1.5 and 1.7, we have

RIS ey ZHE"HHO

n=0

N
< CReAtY || Vv™|0 + MAE.

n=0

Applying the discrete Gronwall lemma, we reduce (3.4.42) to

[V tlo+ 22 Vet = v+ 52_:0 Bty < mat.

n=0

Also, using Theorem 3.3, we get

N
ALY ‘
n=0

En—H

Therefore, we finally get (3.4.24) by using Lemma 1.1.

63

9 N
<oty (B e+ |V (67 =6 p) < MAE.
n=0

(3.4.41)

(3.4.42)

(3.4.43)

(3.4.44)

3.4.2 Explicit Convection Scheme

In this section, we carry out the error analysis for the explicit convection scheme.
Since the argument is similar to that of Section 3.4.1, we force on the explicit
convection term. To this end, we need the additional assumption that the nu-
merical solution bounded in L*(2). This assumption is also made in [30]

We first prove that Algorithms 3.1-3.2 are of order % strongly, which mimics

the results of Theorem 3.3.

Theorem 3.5 Suppose

o max 0|y < M, (3.4.45)

and Assumptions 1-8 hold. Then Algorithms 3.1-3.2 satisfy (3.4.8).

PROOF. Instead of (3.4.16) in the proof of Theorem 3.3, the convection term A4
is split as follows:
Ay = =20 (N ((tsr), ultnr), B = N, u?, B4
= —2AtN (U(tns1) = ultn), ultnsn), B
—2AtN(E™, u(tng), E"H) (3.4.46)

—2AN (0", u(tny1) — ult,), EMHY)
—2AIN (W B B = Ay g + Ay + Ags + Ay
By Lemma 1.4 and ||u(t,+1)||, < M, we obtain

A < CDtultusn) = ultn) ollultns) || VE™!

0
) (3.4.47)

tn41 At R
< CReAt H1?dt —HVE”+1
< orentt [(e + 0

64

as well as
Agp < CALIE|llutns)ll,

Vﬁn—i—l
0

3.4.48)
At o]2 (
< CReAt|E"|’ + @HVE"“

,
Since divu® = 0, Lemma 1.3 yield A3 = 2AtN (0, B uty 1) — u(tn))-

Invoking [[u"||pe(q) < M, we get

Ay < OO eey|VE™

altass) = u(ta)lg

A\t R 2 tnt1 (3449)
< —||VE""'| +CR AtZ/ t)lle-
< el VET, HORen® [
Likewise 24,4 = 2AtN (u”, E+!, E") and
Aig < OO gon B | VE|
3.4.50)
At || |2 (
< CRent[E"+ | VE |
< CReAt|| ||O+8Re \Y% .
So,
> o [2 n2 . At opnt)?
A< CRen? | (o)t + OBt I3+ o | VE | (3

Since this estimate for A, is the same as for A4 in (3.4.19), we proved as in
Theorem 3.3 to conclude (3.4.8). u
We finally establish that Algorithms 3.1-3.2 are order 1 weakly, there by

extending Theorem 3.4 for explicit convection schemes.

Theorem 3.6 Suppose
max ||u"||Loo(Q) < M, (3452)

0<n<N+1

and Assumptions 1-8 hold. Then Algorithms 3.1-3.2 satisfy (3.4.24).

65

PROOF. Instead of (3.4.31) in the proof of Theorem 3.4, the convection term A

becomes

~

A = =240t (N(u(tpsr), ultnsr), v — N (u™, ", v"))
= =2AtN(u(tns1) —u(ty),u(tn), v™Hh)
2NN (E" u(tpyq), v
(3.4.53)
—2AtN (U™, u(tps1) — u(ty), v
—2AtN (u", E™, vt
= 24\3,1 + ;4\3,2 + A\3,3 + 23,4-
We now argue as in Theorem 3.5. We observe first Lemmas 1.4-1.5 yield

Ay < CAtu(tng) = ultn) ollualtnen) L[| 7v"

tn+1 9 (3454)
< cm?/ s (8)|2dt + C At Ty 2,
tn
and
121\3,2 < A75||]53"||o||11(75n+1)||2van+lHo
At i i i i (3.4.55)
< AL (|« e — B |) + CRead Tv
Secondly, we use Lemmas 1.3 and 1.5 to infer that
Agy < OB gy 1) = ultn)llo [V"
) tntt) (3.4.56)
< CAtHVv”“HO—i—CAtQ/ || (8) |[5dt,
tn
and
23,4 < CAt“un”Loo(Q)||En||ovan+1H0
At i i i i (3.4.57)
< DL (e + [Er) + CRent[vv

66

So, (3.4.53) becomes

~ tnt1
i, < c&ﬁ/’ lu,()|2dt + CReAL| Vv
tn

A.
At (3.4.58)

2V (12 4 |lEr T — B2 2) _
P L (o2 4 o -
Making use of (3.4.58) in place of (3.4.39), and proceeding as in Theorem 3.5, we

easily arrive at (3.4.24). n

3.5 A Priori Error Analysis for Velocity : Algo-
rithms 3.3-3.4 with Dirichlet Condition

In this section, we estimate the velocity error for Algorithms 3.3-3.4, which
employ a Dirichlet condition. The chief difficulty of this estimate is that now
u" - v # 0. This is responsible for the reduced order O(y/At) of Theorem 3.7,
which is consistent with a rate obtained in [30] via asymptotic, and for the re-
quest of the additional regularity assumption (3.5.1). However, (3.5.1) is a weaker

condition than (2.2.7) in Chorin-Uzawa method.
Theorem 3.7 Let Assumptions 1-8 hold, If, for 0 < T < oo,

T
[Imoliae <, (35.1)
0

then the error functions of Algorithms 3.3-3.4 with semi-implicit convection (3.2.15)

satisfy

N
[B 5+ 3 (e — B + [V(67— 6M)5)
n=0

(3.5.2)

2

1 At i~
_ S VEn+1
0 + 4Re nz::() H

A N+1
Re ¢

2
< CAt.
0

+R6Ath(tN+1)

67

PROOF. The departing point is again (3.4.11) which we rewrite here for conve-

nience:

n+1”2
B

_||En||g+ HEn+1 —E"Hz—i-2HV(¢"+1 — ") 2

I
MtHVEnH

_ n+1
=24t <Rn+1, B >
~ 2Nt
: n+1 n n+1
+2At <p(tn+1), div E™* > To <A¢ div E** > (3.5.3)
YN (N(u(tn+1) (n+1) En-l—l) N(lln, ﬁn—l—l’ En—kl))

A+ Ay + Az + Ay

To estimate A; and A, we proved as in Theorem 3.3 and thereby obtain (3.4.13)

and (3.4.19), respectively. The remaining two terms A, and Az are more delicate

and are handled together as follows:

Ag + As

where ¢"

and

2Nt <p(tn+1) — éAqﬁ”, A" — ¢")>

208 (pltnt1) = pltn) , A" = ¢™))

(3.5.4)
—2ReAt(¢", ¢"*" — ¢") + 2ReAt (", p(tni1) — p(tn))
B, + By + Bs,
= p(tn) — R—A¢” In view of (3.5.1) we have ||p(tny1) — p(tn)]| <
e
tnt1
(At/ ||pt(t)||§dt> , whence using Lemma 3.6,
tn
By < Cﬂtllp(tnﬂ)—p(tn)||o||A(¢”+1—¢")H0
tn+1 2 (355)
< CReAtQ/ |lps (¢)||0dt—|- ‘VE"Jr1 .
tn
5 tnt1 5
By < CRAP|I}+CRest [(0l (35:6)
tn

68

For B, we employ, in addition, the elementary inequality (a + b)?

1
(14)b, for € > 0,
€

B, = —Retst ([}~ 10”112
2

+R6AtH(p(tn+1) — p(tn)) — éA(qb"“ —¢")

0

IN

~Ret ([l = Nl 2)

9IAtL

tnt1
+CReAR? /t I3t + o= [VB

.
From (3.5.5)-(3.5.6), we get
s+ Ay < —Reist ([l 5 = lla"I1}) + CReA "

5At ‘VEn-I—l

Inserting (3.4.13), (3.4.19), and (3.5.8) into (3.5.3) yields

2

s P + = B+ 2 Vi - o)

At~ 2
L ReAt (an+1H0 g™l) Re ‘VEn—H 0

<t (B + V(e = ¢M)[fy) + CRenHE"|;

tn+1
+CReA?||¢"||2 + CRet? / |[us (8)] 5t
tn

tn41 5 tnt1 9
+CRoA / I ()12t + C A / (6|2,
tn tn

69

(2]
+ CReAt / Ipe(1)| 2.

< (1+¢)a®+

(3.5.7)

(3.5.8)

(3.5.9)

Summing over n from 0 to N,
N
[B o+ 30 (I =B+ [V (e - ¢7)5)
n=0

+Rettlg" |5 + = Z HVE"“

N N
< CAtZ (5 + V(674 =) [5) + CReAtD B[(3:5.10)

n=0

tN11
+Ravmwam+wn%A#§jM|m+0Ay/ s (0|l

n=0

tN+1

tN4+1
LCReAE / lus(8)|2dt + CReA / Ipe(8) 12d.
0 0

Finally, by the discrete Gronwall lemma, we conclude (3.5.2). u
Arguing as in Theorems 3.5 and 3.7, we can get the following result for explicit

convection schemes.

Theorem 3.8 Let Assumptions 1-3 hold, If, for 0 <T < oo

T
max [[u e <M and /|mw%wSM, (3.5.11)

0<n<N+1 0

then the error functions of Algorithms 3.8-3.4 (with explicit convection) satisfy
(8.5.2).

3.6 A Priori Error Analysis for Pressure

The goal of this section is to estimate the pressure error in L?(L?) for Algorithms

3.1 and 3.2. Recall from (3.2.6) that the discrete pressure p"*! is given by

n+1 n
pitl=— ¢ At(b + o AQS”H (3.6.1)

70

The main auxiliary bound to derive a pressure error estimate is the following:

N
A |[ET - B < onr. (3.6.2)

n=0

To achieve this, we need additional regularity assumptions for the exact solution

of (1.1.1) beyond Assumptions 1-3 in section 3.4.

Lemma 3.7 Suppose Assumptions 1-3 hold. If
[Vu(0)[l, < C, (3.6.3)
then we have

At At |l o2
B0+ 199l + Rl + g [V < 0o Goay

and

[Vvi]|, < cAd. (3.6.5)

PROOF. By choosing n = 0 in (3.4.20), and realizing that E® = 0 and ¢° = 0, we

have
VAN A\t 12
B+ (V61 + Sy + o VB
< coi (B2 + [96'[2) + CorIvaml: 366

t1

t1
CCRens? / lus(0)2dt + OAL / o (6) e () | 2.

Since o(t) =t in t € [0,1], we get (3.6.4) from (3.6.3) and Lemma 1.6. Since
IV, < [IEY|,, We can get, by choosing n = 0 in (3.4.40),

CAt

[vel} < chea|vv+ S0

(1ol + =115

, b (3.6.7)
0+0At2/ (||utt
0

+CReA?||VE!

2 s ()][2) dt.

71

2. + lu(t)]l < C by Lemmas 1.5 and 1.7. Finally (3.6.3) and

We note ||luy
Lemma 1.6 imply (3.6.5). n
Now, we prove HENJrl — EN”ﬁ < CAt2. This will be used in proof of the main

result (3.6.2) in Lemma 3.9.

Lemma 3.8 Suppose Assumptions 1-3 hold. If
[V, (0)]l, < C, (3.6.8)

then the error functions of Algorithms 3.1-3.2 are bounded by

HEN“—EN||§+%\A<¢N+I—¢N>||§

+ZHEn+1 oE" + E" 1||0

v(E! — En)
T 4Re Z H (3.6.9)

n=1

PROOF. Subtracting the n-th formula (3.4.10) from (n 4 1)-th one, we have

En+1 — 9E" + En—l V(¢n+1 _ 2¢n o ¢n—1) 1 . .
— —A En+1 _E"
At * At Re ()

= (Ruis = Ra) = V(pltas) — plta) + - VA = ")
(3.6.10)

—(u(tpsr) - Vu(tpsr) + (u™ - V)"t

F(ulty) - V)u(ty) — (™" - V)@

72

We multiply by 2At(f}"+1 - E") = 2At (EMt! — En 4+ V (¢"+! — 26" + g™ 1)) €
H}(2), and Lemma 3.5 to get

L LA e ol
2Nt

2

2V (6 = 207+) 24 22| (B -)

0

— 2Nt <Rn+1 _R,, Bt E">

YN <p(tn+1) ~p(ty), div (En ! — 1?3")>

2At
‘Re

—2At<./\/'(u(tn+1) u(t,1), E" — E")

<A(¢” —¢m7), div (B - E")> (3.6.11)

_N(un’ ﬁn-}—l’ En—f—l _ En)
+IAL (N(U(tn), u(ty), Ertl _ En) _ N(un—I, i, Ertl _ En))
:A1+A2+A3+A4+A5.

We now estimate each term A; separately. First, we observe that

tn+1
n n 2
A < 8R€Hv E +1 E) —i—CReAﬁ /tn_l ||utt(t)||0dt, (3.6.12)
and
+1 2 tn+1 9
Ay < 8R6HV (E" —E") +CR€At /t [[pe(£)llgtt- (3.6.13)

73

We next use Lemmas 3.5 and 3.6 to obtain

Az = T he (A" =™ 1), A" —

— B (g -) - e -)

At n+1 n n—1y[[2
+ A 26"+ 6

IN

At ~ ~ |2
I V En—|—1 - En
+R€H () 0

L (law - a2 [

20" +¢"1))

(3.6.14)

— &)

We can split the convection terms as follows: By [ju(t,)||, < C and Lemma 1.4,

Ay = =20tN (ultpsy) —u(tn), utey,), B — B

—2AtN (E™, u(tns), B — E)

—2AN (0, E"H B - B
= Ay + Ago+ Aygs,

and

(3.6.15)

As = 2AtN(u(ty) — ult,_y), u(t,), B — E?)

AN (EY L u(t,), ErH

+2At./v’(unfl’ En’ En+1 _ En)

= As1+ A5+ Ass.

_ En)

(3.6.16)

Since ||u(t,)|], < M from Lemma 1.5, Lemma 1.4 yields

Ay < CAtllutng) — altn)llo/a(tn)ll,

tnt1
< CReM/ ||ut(t)||§dt+20R |v@ -~ &)
tn

74

_Er

1

) (3.6.17)

0’

Ay < cmnE“nonu(th)g - E"

1

(3.6.18)
< CReAH|E"|? H (Em+t — B
Asy < COHultn) = ulta-)lglult)],|[v (B —E7) |
< CReNt t Hv (B -8
< CReA? [)i + 5o .
Asz < OB u(t)]),| VET - B
0
) (3.6.20)
< CReAt||E™ |v@E - B
< Creat|Er |+ AL g @ -
Invoking the crucial properties of N of Lemma 1.3, we infer that
Ags+Ass = 20N (", EMLEY) + 24N (w1 EY B
= AN (0" — u™ ! ErT ")
= 2AtN (u(ty) — u(ty_r), B — E*, E") (3.6.21)
—2AtN(En _ Enfl’ En—{—l _ En’ En)
= B!+ BJ.
We postpone the estimate of By until the end of the proof. Since HE“ <,
1
Br < CAtu(t,) —u(ty_)|, ~E"|| |E
1 1
L [, N (3.6.22)
< CReAt)[[2dt HV (B! — Br
< CRent [o)t + 5o)|
So, collect (3.6.15)-(3.6.21), we have
A+ Ay < By +CRett (B + B 2)
(3.6.23)

ey |v@ -~ & * £ CReAR? / T (02t
4Re 0 € b P

tn—1

75

Inserting (3.6.12)-(3.6.14) and (3.6.23), back into (3.6.11) yields

Bt =By — [|B B g+ B - 2B+ B,
A 2) s o (8-)
At _
+= (a6 = Mo =A@ = 6" l) (3.6.24)

< B} + CReAt (||E"||§ + }\E”*l}\i)

tnt1
LOReAP / (lan@® 2 + @2 + lpe()]2) dt
tn—l

Summing over n from 1 to N, and noting that E® = 0 and ¢° = 0, implies

At
[=B+ A (67 = M),

N N
+D [- 2B+ B 22 [V (7" — 26"+ ") g
n=1

N
e 2o |v (B)

ZB" \Aﬁb [(3.6.25)

+[|B; +0ReAtZ||E"||§

n=0

tN+1
LOReAP / (la)2 + a2 + [pe)12) dt

In view of Lemmas 1.5, 1.6, and 3.7, we conclude
[— B2+ 2 60 - oY)

N N
n n n—1||2 n n n— 2

e[(B)|

N
<CAP+) By
n=1

76

It remains to estimate B}. By Lemma 1.4 and Theorem 3.3, we obtain

B < CAt|E"—E"7||E" - - 8| &
< CAtHE" - —~E"| ||E" (3.6.27)
1 1
n+1 n n
< 4R€HVE 50 +0At2 B

N
~ 2
because of (3.4.7). Since At E HVE” < CAt, by Theorem 3.3, we have
0

+ CAtr. (3.6.28)

N
By < |v@E - g
; > = 4ReZ v)

So (3.6.26) can be bounded by

At
HEN+1 — B+ ol (07 - ¢N) s

n=1

(3.6.29)
2 3
‘ < CAL.

4Re Z HV (En+1 En) 0

Since this is not yet the correct order, we estimate BI again, but this time

employing (3.6.29). We now use the improved estimates
|E"*! —E"||, < CAt, (3.6.30)

and

|V(E™! —E")|, < CAts (3.6.31)

the latter resulting from (3.4.7), we see that

B < CAt|E"—E"||7||E" - - 8| &
< CAt:|EH —E| |E” (3.6.32)
1 1
n+1 n 2 n
< 4R€HVE —E") +0At D

77

N
~ 2
Since At E HVE” < CAt, by Theorem 3.3, we realize that (3.6.28) has been
0
=1

n—=
improved as follows:

éBg < Z | v -8 + I (3.6.33)

Inserting (3.6.33) into (3.6.26) gives (3.6.9), as asserted. n
Lemma 3.9 Suppose Assumptions 1-3 hold. If

[V, (0)]l, < C, (3.6.34)

then the error functions of Algorithms 3.1-3.2 satisfy

B m|

N
2 T Y |ETT -2+
: N (3.6.35)
n n 2
+ E; |E"T — E"||] < CAL.

PROOF. Let (v ¢"*1) € H{(Q2) x L3(£2) be the solution of the Stokes equation
(3.4.22). Multiplying (3.6.10) by 2A¢(v"* —v™) € H}(Q), we get
9 <En—|—1 —9E" + En—l’ vn—|—1 _ vn>
+2R_A: <V(En+1 _ En) ’ V(Vn+1 _ Vn)>
=2At <Rn+1 -R,, v — v">
_ZAtN(u(tn-f-l)a u(tﬂ-f-l)a V"+1 - Vn) (3636)
+2AtN(n An-}-l’ Vn+1 _ Vn)

+2AtN (u(t,), u(t,), v —v®)

—2AtN (u" 7 ", v — vh).

78

With the aid of (3.4.22), the left hand side can be handled as follows
2(EM —2E" + E"1, v — ")
=2(V(" = 2v" +v" 1), V(v"T —v"))
= [Vt = v o= [V = v

+HV(Vn+1 _ oyt 4+ anl)Hi,

and use (3.4.4)

QR—A; (VE™ -E"), (v =)
_ 2}?675 <(En+1 En) _ V(qn—l—l _ qn) ’ En—|—1 _ En>
_ 2t N S
B B - == (Vg -), B B,

In view of Lemma 3.5, (3.6.36) becomes

[Vt =)o = [V = v,

+Hv(vn+l_2vn+vn—l)H§ 2AtHEnH EnH(Q)

YAV
= e V(g™ —q"), V(" = 26" + ¢" 1))
€
+2At <Rn+1 —-R,, v" — v">
—2A¢ (N(U(t”+1), u(tn-f-l)a Vn+1 - Vn)
~N(u(t,),u(t,),v* —v")
_N(un’ ﬁn—l—l’ Vn—|—1 _ Vn)

+N(n—1 An’v_n—l—l _vn))

:A1+A2+A3.

79

(3.6.37)

(3.6.38)

(3.6.39)

We estimate each term A; separately. We first use Assumption 1 to write

CAt _
Al S i ||V(qn+1 o qn)||0Hv(¢n+l o 2¢n+¢n 1)”0
3.6.40)
At n+1 n||2 CAt n+1 n n—1y |2 (
< SRl BT B+ R V(6T =267 + 6"
Since
2AL (R, , v —2v™ 4 vl
1
2 2 n+1 n n—1y|2
< CAL Ryl + 5|V = 2v" + 3" (3.6.41)
bnt1 9 1 2
< C’At3/ ||ue () Z*dt—l-§HV(V"+1 —2v" +v")|,
tn
we deduce
Ay = 2At <Rn+1 , vt — V”> —2A\t <Rn , VIt — V”*1>
—2At(R,,, v*T —2v" + v
(3.6.42)
< 20t (Rpyr, vV =) —2AH(R,, v — v
bn+1 9 1 2
+C’At3/ s (¢)|| 5 dt + 5HV(V”+1 —2v" + v h||
tn
The convection A3 can be split as follows
Ay = —2AtN(ultngr) — ulty), ultyer), vt — v
—2AtN (u(ty), u(tns1) — u(t,), v —v™)
(3.6.43)

+2At./\f(u" _ un—l’ ﬁn—i—l’ Vn+1 _ Vn)

+2At./\/(u"_1, ﬁn—l—l _ ﬁn’ Vn+1 _ Vn),

80

Ay = =2AtN(u(tnyr) —2u(ty) +ut,_1), ult,1), v —v")
—2AtN(E" —E" 1 u(tyy), v"T —v")
AN (0" — u L B vt)
—2AtN (u(tn) — utn_1), u(tns1) — u(t,), v —v") (3.6.44)
AN (B u(terr) — ult,), vt —v?)
AN (0" EMT - Er v — v

= A31+Aso+ Ass+ Azs+ Ass + Ase.
Using Lemma 1.4, the first two terms become
Azp £ COH(tnsr) = 2u(ts) + ultn-)llollultas)][V(v = v™) |

tn+1
< oot [i canver -

(3.6.45)
and
Aszs < CAtHE” - E”_lH0||u(tn+1)||2HV(V"+1 — v”)HO
At n n n n n—
(s N s S VT
+OReAt]|V (v?H — v |2,
We split the next term as follows:
Az = 2AtN(E"—E™ 1, E”H, vt — ™)

AN (u(ty) — u(tnr), Bt vt — v (3.6.47)

= Azszi1+ Azzo.

81

Since HE” — E"_1HO < CAt by Lemma 3.8, we have from Lemmas 1.3 and 1.4

Aaas < COUEN =B B | ot -,

< CAR||VE™! B (3.6.48)
ATL 2 At n n
< CReAt*| VE"™ 0+TReHE H—E",.

Since HE"HH < At? by Lemma 3.3, again Lemmas 1.3 and 1.4 yield
0

Azzo < CAtu(ty) —ultn-1)lly

En+1H an+1 _ vnH
o 2

< CAt|u(ty) — ulty)|, |[E™ — E"||, (3.6.49)
< onent | OO N [SR
= - U 12Re 0

Since ||u(t,) — u(tn-1)||; < CAtz, we have
Ays < OBtut) = ultus)lfaltns) = u)ll v =7,
3 n n
< CA[ultni) = ulta)ll v = v7|; (3.6.50)

tn+1
< oni [il s o -2

Theorem 3.3 yields HE”_1||0 < At%, and this in turn implies

Ass < CALJE| ultnsr) — ut)l, v = v,

’

< OOt [utys) —)|, |E - E|, (3.6.51)
b At .
< ORedt [o)+ gy B - B

We split Az ¢ as follows:

Ags = 2AIN(E"LEMH —En vt - yn)

o (3.6.52)
—2AtN (u(ty 1), B — E" v™ — V™) = Az + Asgo.

82

Lemma 1.4 yields

A3,6,1 < CAtHEn_lHo En+1 N En len-H N vnH2
< CAt3|E - E" [B (3.6.53)
2 Tnnt+l _ Tn 2 At n+l _ n||?
< CReAt*||V(E E")|| + 12R6HE E"||,.-
Lemmas 1.3 and 1.4 give
Aspo < CAtu(ty—1)|l, E"! - E 0an+1 _Vn”1
A e e? L (3.6.54)
< o |[BT =B+ CReat|lvt v}
Collecting (3.6.45)-(3.6.54), we see that
At n n n n
Ay < o |E"-E o+ C(1+ Re) At V(v —v)]2
At n n n—
+1opa IET — 2E" + B He
2 _ T (3.6.55)
+OReA?| VE™|| + CReA||V(E™ -)|
tnt1
401+ RAE [(Ol + (o)) .
tn—1
Inserting (3.6.40), (3.6.42), and (3.6.55) into (3.6.39), leads to
IV (=) g = 1907 = v g + o[B! =B
+%HV(V"+1 —2v" + v”_l)Hi < CAIS”V(V"Jrl — v”)”§
CAt
+ 2 (V@ = 2gn+ g [+ BV = 2B + B 1))
2 (3.6.56)

A~ 2 ~ ~
+CReAt3HVE”+1 . CReAt2HV(En+1 —f)

0

tn+1
+C(1+R€)At3/ (||utt(t)||§+ e ()| + ||utt(t)||;*) dt
tn—1

+2At <Rn+1 vt — v”> — 2N\t <Rn, v — v”_1> .

83

Summing over n from 1 to NV,

IV (5 =) g+ ZHV v vt

ZHE"“ E"IIO<C‘NZHv =),
n=1

+C’At
Re

n=1

2

N
+CReA? S HVE"+1
n=1

N
2 ~ ~
CReAt Hv Fntl _ fn
, T CRe n§—1: ()

0

N1
+O(1+ Re) AP / (@12 + [@)1 + llu ()][2.) de

0

+HVV1H§ + 2At <RN+1, v+ VN> — 2/t <R1 , v — V0>.

The residual terms become
tN+1 5
YAV <RN_|_1 y VN—F1 - VN> S CAt3/ ||utt(t)||z*dt
tn

2

1
+§HV(VN+1 — VN)} 0’

and

t1
—2AL (R, v' = v0) < CN?’/ e (8) -t + [V
0

(I —2g" +-6m [+ B — 2B + B[

(3.6.57)

(3.6.58)

(3.6.59)

because v? = 0. Lemmas 1.5-1.7, and 3.7-3.8, together with Theorems 3.3-3.4,

imply

N
IV (=M o+ D[Vt = 2vt v Y|
n=1

ZHE”“ E"|\0<0AtZHV g+ oAt
n=1

Finally, the discrete Gronwall lemma gives (3.6.35), as desired.

Now we estimate the error e®*! of pressure of the Algorithms 3.1-3.2

84

(3.6.60)

Theorem 3.9 Suppose Assumptions 1-3 hold. If

IVu ()], < C. (3.6.61)
then the pressure error functions e+t of Algorithms 8.1-3.2 satisfies

N
AY [l | < cat. (3.6.62)

n=0
PROOF. By definition (3.6.1) of discrete pressure p™*!, (3.4.10) can be rewritten

by for all w € H(Q2),

E"tl — E» 1 ~
n+1 . _ n+1
<e , div w> = <7At , W> + Te <VE , Vw>
+N(utysr), u(tysr), w) — N (u™, @, w) (3.6.63)

_é <A(¢"+1 —¢"), div w> — (Rpg1, W)

By continuous inf-sup condition, there exists z"*! € H}(2) and 8 > 0 such that

(em*1 | div z"T) = ||e”+1||(2) and HZ"HH1 < %HenHHO. (3.6.64)
So
ety = {(e™*', divz"t)
— En+1 —E" n+1 1 =nt1 n+1
= <7At z >+E<VE . Vz >

+ (N (u(tns1), ultntr), 2") =N (u, 0", 2")) (3.6.65)
—% (A" = ¢™), divz") — (Rpga, 2"
= A1+ A+ A5+ Ay + As.
We now proved to estimate each term A; separately. We first note that

||En—|-1 _ En” ||Zn+1|| C . . .
A= A S g BT = E ol o (3.6.66)

85

and

C

A, < QHVE"“ e

Re

OHVZHHHO < HVEH-H

el
The convection term As can split as follows:
Ay = —N(u(tesr) —ultn), ultass), 2"
—N(E”, u(tn+1), Z”+1) _ N(un’ En+1,zn+1)
= —N(utp) —ultn), u(tni), 2"

—N(En, u(tn+1), zn-i—l) + N(En, En+1, zn—|—1)

—N(u(ty), En—f—l’ z") = A3y + Azp + Azz + Az

In view of Lemma 1.4, we have

Az < Cllutnsr) = ulta)llollu(tar)llo[| V2"

C
< Slhuttne) = utt)lofe

and

C
Agy < ClIE" ollultns) | V2" [y < ZIE"lofle

Since ||E™||; < C by Theorem 3.3, applying Lemma 1.4, we get

Ay < B || B

n C An
e, < | B

e o
0

and invoking also Lemma 1.3 with u = u(¢,), we see that

Az < |Julty)]l,|| E™

n+1 QHAH-}—I
e, <

e+,
0

< OHvEm—l
0

Poincare inequality yields HE"“ , whence
0

A, < % (HVEW

86

o+ B+) = ulta)l) [l

(3.6.67)

(3.6.68)

(3.6.69)

(3.6.70)

(3.6.71)

(3.6.72)

(3.6.73)

On the other hand, we have

1
A < gl a@ = ¢m)|oldiv "],

1 1 (3.6.74)
< 536” (6" = ") lolle™{los
and
C
A5 S ||Rn+1||—1||vzn+1|‘0 S E”Rn—H“—lHen_‘—lHo' (3675)
By (3.6.66)-(3.6.67) and (3.6.73)-(3.6.75),
n n c
el < thE B+ G IRl

C) _
+3 (Ilu(tn+1) —u(ta)lly + [IE"[l, + HVE +1

)

Squaring, multiplying by At, and summing over n from 0 to N, we end up with

al) C & 2
Aty et < i 2 Z [B - B
n=0 =

C’At " "
G ([)
(3.6.77)
C’At " n n
e M\ R INTEETH
CAt [+ CAE? [+ 2
+— o () |[un(t)]1* dt + [[ae (£)][odt.
B8 Jo B Jo
By Theorem 3.4 and Lemmas 3.8-3.9, we finally get (3.6.62). |

87

Neumann Dirichlet

L[Bvo+ atert|o < oar | BY D < ot

div No Super Convergence of

opntt 3d No Pressure
in
or

e+ adlevs s < oae | TV BV T < oA

curl
Work on 2D No Pressure Work on 2D

Table 3.1: Summary of Gauge Methods

3.7 Conclusion and Numerical Results for Gauge
methods

The Table 3.1 is the theoretical summary of gauge methods, and the difficulty
n+1

or

for boundary differentiation in 3d for Algorithm 3.1 is explained in Figure
4.3 in Section Figure 4.1.
We report here numerical experiments with Algorithms 3.1-3.4 and examples

1.3.1 for several finite element spaces for velocity, pressure, and gauge variable as

follows:

Pl_Pl_Pl, Pl—Pl—PQ, (371)

and

P,—P —P, P,— P — P, (3.7.2)

All finite elements are continuous, and the pair P, — P; is the well known stable

Taylor-Hood combination. Our aim is to compare their performance for both

88

velocity and pressure in L?(Q2) and L*®(2), and several combinations of finite
element space. The goal of these experiments are to discover the relations among

each discretized space.

3.7.1 Algorithms 3.1 and 3.2 : Neumann Boundary Con-
dition
The combination of (3.7.1) do not satisfy the discrete inf-sup, and that Algo-
rithms 3.1-3.2 do not necessarily converge to the solution of NSE (1.1.1). But,
in experiment, the finite element spaces P, — P, — P, and P, — P, — P, seem to
be stable for pressure for both h = At?> and h = /At (see Figures 3.7, 3.10, 3.19,
and 3.22), and the errors for pressure in L*° do not decay in other finite element
space except Algorithms 3.2 in space P, — P; — P;. These results do not consist

with the concept of inf-sup condition. So we invest the space discetization for

gauge methods in Chapter 4.

89

Velocity in L2

10
-©- 1.54
-3
§ 10
m
©
g .
10"
10_5 3 4 5
10 10 10 10
Log of DOF
a Pressure in L2
10 T T
-©—- 0.89
-O- 1.60
-2
§ 10
|
©
g .
- 10 3 © ~
h ~N
O]
10_4 3 4 5
10 10 10 10
Log of DOF

. Velocity in L
10 T .
-©- 0.94
-O- 0.91
-2
§ 10
I,
©
[=2] a ~
o -3 ~
=10 ©
~o. _
T o
10_4 2 3 4 5
10 10 10 10
Log of DOF
. Pressure in L”
10 T .
-1
510 o
i S
- o _
o ~
)] O
o ~
- 10 e
-©- -0.12
-O- 0.98
10_3 2 3 4 5
10 10 10 10
Log of DOF

Figure 3.1: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h?

and Spaces P, — P, — P; Elements.

90

Figure 3.2: Error Functions for Algorithms 3.1 with At = h? and Spaces P, —
P, — P, Elements (DOF = 24,963).

Figure 3.3: Error Functions for Algorithms 3.2 with At = h? and Spaces P, —
P, — P, Elements (DOF = 24,963).

91

> Velocity in L2
10 .
-©- 0.97
-O- 0.97
S -
IR
s 10
D
o
-
10_4 3 4 5
10 10 10
Log of DOF
a Pressure in L2
10 .
-©- 0.97
-O- 0.95

Log of Error
[
S

-3

10
10

10* 10
Log of DOF

-2

Velocity in L

10

Log of Error
[
o|
w

10_ 3 4 5
10 10 10
Log of DOF
. Pressure in L™
10 T
o— o — 4
g o - -0 _ _
o, el _
% 10 ~ -
> q
(=]
-
-©- 0.13
-O- 0.71
10_2 4 5
10 10 10
Log of DOF

Figure 3.4: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h

and Spaces P, — P, — P; Elements.

92

Figure 3.5: Error Functions for Algorithms 3.1 with At = h and Spaces P, —
P, — P, Elements (DOF = 24,963).

Figure 3.6: Error Functions for Algorithms 3.2 with At = h and Spaces P, —
P, — P, Elements (DOF = 24,963).

93

. Velocity in L2 5 Velocity in L
10 T T 10 - r
-©- 1.90
-O- 1.91
-3
§ § 10
o, o
‘5 10 ©
[=2] [=2]
o o —4
| - 10
10_5 2 3 4 5 10_5 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 . Pressure in L”
10 T 10 - r
-©—- 1.60 -©—- 0.98
-O- 1.60 -O- 0.96
-2
510 S
0 5,
S % 10
[=2] [=2]
o 3 s}
=10 o
10_4 2 3 4 5 10_3 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 3.7: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h?

and Spaces P, — P, — P, Elements.

94

A
il

Figure 3.8: Error Functions for Algorithms 3.1 with At = h? and Spaces P, —
P, — P, Elements (DOF = 49,667).

Figure 3.9: Error Functions for Algorithms 3.2 with At = h? and Spaces P, —
P, — P, Elements (DOF = 49,667).

95

5 Velocity in L

10 T
-©- 0.97 -©- 0.97

-O0- 0.97 -0- 0.97

-2

10

Velocity in L2

Log of Error
=
CDI
Log of Error
=~
oI
w

10° 10* 10° 10° 10° 10* 10° 10°

Log of DOF Log of DOF

Pressure in L2 Pressure in L”

—©- 0.95 —©- 0.68
-O- 0.96 -0- 0.71

——_

Log of Error
=
ol

Log of Error
[~
oI

10° 3 4 5 6 10° 3 4 5 6
10 10 10 10 10 10 10 10

Log of DOF Log of DOF

Figure 3.10: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h

and Spaces P, — P, — P, Elements.

96

“\“\"\\‘ i
I ‘\“a‘\“‘\?\““‘)
l“““\\

i
il

fiM

Figure 3.11: Error Functions for Algorithms 3.1 with A¢t = h and Spaces P, —
P, — P, Elements (DOF = 49,667).

Figure 3.12: Error Functions for Algorithms 3.2 with At = h and Spaces P, —
P, — P, Elements (DOF = 49,667).

97

Velocity in L2

10
S
TR
s 10
[=2]
o
-
10_4 3 4 5
10 10 10
Log of DOF
a Pressure in L2
10 r
-©—- 0.93
-O- 0.81
S
TR
s 10
[=2]
o
-
10_3 4 5
10 10 10
Log of DOF

Velocity in L

107
-©- 0.97
-O- 0.91
S
oo,
% 10
[=2]
(=]
-
10_3 3 4 5
10 10 10
Log of DOF
L Pressure in L™
10 :
-©- 0.07
-O— -0.02
0
510 c—————e—="5— "9
|
ks
[=2] & ~
< B ~
—10 = ~o
TTo----9
10_2 4 5
10 10 10
Log of DOF

Figure 3.13: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h?

and Spaces P, — P, — P; Elements.

98

Figure 3.14: Error Functions for Algorithms 3.1 with At = h% and Spaces P, —
P, — P, Elements (DOF = 74,371).

Figure 3.15: Error Functions for Algorithms 3.2 with At = h? and Spaces P, —
P, — P, Elements (DOF = 74,371).

99

> Velocity in L2

10

-©- 1.0
-O- 0.99

Log of Error
=
CDI

10 3 4 5
10 10 10

Log of DOF

Pressure in L2

10

—©- 0.99
-O- 0.99

Log of Error
=
S

-3

10 3 4 5
10 10 10

Log of DOF

Figure 3.16: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h?

and Spaces P, — P, — P; Elements.

-1

Velocity in L

10

Log of Error
[
o|

-©- 1.0
-O- 0.94

10_ 3 4 5
10 10 10 10
Log of DOF
L Pressure in L”
10 - .
-©- 0.09
-O- 0.60
S
] o e//’e\@\@
% 10
[=2]
(=]
-
[CR _ - O~ ~
IS ~O
10_1 3 4 5
10 10 10 10
Log of DOF

100

Figure 3.17: Error Functions for Algorithms 3.1 with A¢t = h and Spaces P, —
P, — P, (DOF = 74,371) Elements.

Figure 3.18: Error Functions for Algorithms 3.2 with At = h and Spaces P, —
P, — P, Elements (DOF = 74,371).

101

-3

Velocity in L2

10

Log of Error
=
S
A

10_ 4 5
10 10 10
Log of DOF
a Pressure in L2
10 T
-©- 1.74
-O- 1.80
-2
§ 10
|
©
g
- 10
10_4 4 5
10 10 10

Log of DOF

Log of Error

Velocity in L

—©- 1.66
-O- 1.83

10* 10
Log of DOF

Pressure in L”

Log of Error
[
o

-3

10

10

10* 10
Log of DOF

Figure 3.19: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h?

and Spaces P, — P, — P Elements.

102

Figure 3.20: Error Functions for Algorithms 3.1 with At = h? and Spaces P, —

P, — P, Elements (DOF = 99,075).

AR ALNY
Y
ALY

I

R
I
RO

Figure 3.21: Error Functions for Algorithms 3.2 with At = h? and Spaces P, —

P, — P, Elements (DOF = 99,075).

103

s Velocity in L2 . Velocity in L
10 10
-©- 0.97 -©- 0.97
-O- 0.97 -O- 0.97

Log of Error
=
oI
Log of Error
=
oI
w

10" 3 4 5 6 10" 3 4 5 6
10 10 10 10 10 10 10 10

Log of DOF Log of DOF

Pressure in L2 Pressure in L*

-©- 0.95 -©- 0.70
-O- 0.96 -O- 0.73

iR
4

Log of Error
[
oI

Log of Error
=
o

10 3 4 5 6 10 3 4 5 6
10 10 10 10 10 10 10 10

Log of DOF Log of DOF

Figure 3.22: Error Decay of Algorithms 3.1 (Solid) and 3.2 (Dashed) with At = h
and Spaces P, — P, — P, Elements (DOF = 99,075).

104

il
iy
\‘\‘h \‘V“)\\‘

Il
‘\l\“\‘\“\ il

i
\\\‘ i

Figure 3.23: Error Functions for Algorithms 3.1 with A¢t = h and Spaces P, —

P, — P, Elements (DOF = 99,075).

L
L
IR

(! \\\“!

r“ I

i

Figure 3.24: Error Functions for Algorithms 3.2 with At = h and Spaces P, —

P, — P, Elements (DOF = 99,075).

105

3.7.2 Algorithm 3.1 : P, — P, — P, on Regular Domain

The main crucial discovery for gauge method in these numerical experiments is
that they do not depend on inf-sup condition for regular mesh which is symmetric
and equidistance. The Figure 3.25 show us the errors both velocity and pressure
for Algorithm 3.1 converge to 0 on the regular domain (b) in Figure 1.2 in contrast
with the error for pressure on distorted mesh Figure 3.1 and 3.4. The pressures
also for the Chorin-Uzawa and the Gauge-Uzawa methods do not converge to

exact solution in L* space (see Figure 2.13 and 5.9).

Velocity in L2 Velocity in L
107 : : 107
-3 -3
§ 10 § 10
w |
© ©
g g
—-10™ - 10™
10_5 2 3 4 5 10_5 0 1
10 10 10 10 10 10
Log of Dof Log of Dof
Pressure in L2 Pressure in L”
10 : : 107 : :
-2
510 S
w |
© ©
[=2] [=2]
o 3 s}
10_4 2 3 4 5 10_2 2 3 4 5
10 10 10 10 10 10 10 10
Log of Dof Log of Dof

Figure 3.25: Error Decay of Algorithm 3.1 with At = h% and Spaces P, — P, — P,

Elements on Regular Mesh (b) in Figure 1.2.

106

Figure 3.26: Error Functions of Algorithm 3.1 with At = h? and Spaces P, —
P, — P, Elements on Regular Mesh (b) in Figure 1.2 (DOF = 24,963).

107

3.7.3 Algorithms 3.3 and 3.4 : Dirichlet Boundary Con-

dition

As we mentioned in Remark 3.3, the pressures of Algorithms 3.3 and 3.4 do not

necessary to converge to exact solution of NSE (1.1.1). Indeed, pressures in all

experiments in this section are not stable.

> Velocity in L2
10
-©- 0.92
-3
§ 10
v
S
g
—10™
10_5 2 3 4 5
10 10 10 10
Log of DOF
o Pressure in L2
10
-©- -1.65
-O- 0.65
S
oo
% 10
g
i} & ~
T ol
- o)
10 ’ 2 3 4 5
10 10 10 10
Log of DOF

o Velocity in L
10
o 0.44
-O- 1.08
-2
8 10 G\S\e/@
& (€%
"5 ~
8’ ~
S0 O -
\Q N
S|
10_4 2 3 4 5
10 10 10 10
Log of DOF
. Pressure in L*
10
- - _ o
S
i
ks
D
(o]
-
-©- -0.32
-O- -0.02
10_1 2 3 4 5
10 10 10 10
Log of DOF

Figure 3.27: Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h?

and Spaces P, — P, — P, Elements.

108

Figure 3.28: Error Functions for Algorithms 3.3 with At = h% and Spaces P, —
P, — P, (DOF = 24,963) Elements.

Figure 3.29: Error Functions for Algorithms 3.4 with At = h? and Spaces P, —
P, — P, Elements (DOF = 24,963).

109

-2

Velocity in L2

10

Log of Error
[
C)I

10
10

10* 10
Log of DOF

Pressure in L2

10

Log of Error
[
S

-3

—-©- 0.94

10
10

10* 10
Log of DOF

Velocity in L

10
~o- 0.65
-0~ 0.96
-2
§ 10
I,
©
e
EET
10_4 3 4 5
10 10 10
Log of DOF
. Pressure in L”
10 .
o) aq
e——___U
S
i
©
[=2]
(=]
-
-©- 0.00
-O- -0.01
10_1 3 4 5
10 10 10
Log of DOF

Figure 3.30: Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h

and Spaces P, — P, — P; Elements.

110

Figure 3.31: Error Functions for Algorithms 3.3 with At = h and Spaces P, —
P, — P, Elements (DOF = 24,963).

i
s

vll‘}\ﬁl\}\'} llll'wll\'wllh\l‘
Il

\ \l\‘ gl

\
BB i

Figure 3.32: Error Functions for Algorithms 3.4 with At = h and Spaces P, —
P, — P, Elements (DOF = 24,963).

111

> Velocity in L2
10 T T
-©—- 1.93
-0- 1.94
-3
§ 10
w
©
g .
10"
N
10_5 2 3 4 5
10 10 10 10
Log of DOF
Pressure in L2
107 : :
-©- 0.35
-O- 0.44
S
w
©
[=2]
S
10_2 2 3 4 5
10 10 10 10
Log of DOF

Figure 3.33: Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h?

and Spaces P, — P, — P, Elements.

-2

Velocity in L

10
-©- 0.98
S
b
% 10
[=2]
(=]
-
10_4 2 3 4
10 10 10 10
Log of DOF
. Pressure in L”
10 T T
S
i
ks
[=2]
(=]
-
-©- -0.02
-O- -0.02
10_1 2 3 4
10 10 10 10
Log of DOF

112

Figure 3.34: Error Functions for Algorithms 3.3 with At = h? and Spaces P, —
P, — P, Elements (DOF = 49,667).

Figure 3.35: Error Functions for Algorithms 3.4 with At = h? and Spaces P, —
P, — P, Elements (DOF = 49,667).

113

> Velocity in L2
10 T .
-©- 0.97
-O- 0.97
S
IR
s 10
D
o
-
10_4 3 4 5 6
10 10 10 10
Log of DOF
a Pressure in L2
10 T .
-©- 0.91
-O- 0.91
S
I
s 10
D
o
-
10_3 3 4 5 6
10 10 10 10
Log of DOF

Figure 3.36: Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h

and Spaces P, — P, — P, Elements.

-2

Velocity in L

10
-©- 0.97
-O- 0.97
S
b
% 10
[=2]
(=]
-
10_4 3 4 5
10 10 10 10
Log of DOF
. Pressure in L”
10 T .
o—6—6—=9O
S
i
ks
[=2]
(=]
-
-©- -0.01
-O- -0.01
10_1 3 4 5
10 10 10 10
Log of DOF

114

Figure 3.37: Error Functions for Algorithms 3.3 with At = A and Spaces P, —
P, — P, Elements (DOF = 49,667).

i
i

Figure 3.38: Error Functions for Algorithms 3.4 with At = h and Spaces P, —
P, — P, Elements (DOF = 49,667).

115

Velocity in L2

10
S Qa
b L O
k) 10 ~
o> N
o O
- ~
—-©- 0.86 oo
-O- 1.14 N -
10_4 3 4 - 5
10 10 10
Log of DOF
0 Pressure in L2
10 .
-©- 0.07
-O- 0.53
1| G— FaY
é 10 —O |
|
©
8 L&
—10 >
o _
T Oo— _ _
-
10_3 3 4 5
10 10 10
Log of DOF
Figure 3.39:

and Spaces P, — P, — P; Elements.

. Velocity in L
10 T
—-©- 0.64
-O- 0.90
-2
510 9\6\9\@
< e _
o - -~
o O~
S .q8 - -
10 oo _
RS
10_4 3 4
10 10 10
Log of DOF
L Pressure in L™
10 .
-©- -0.47
-O—- 0.02
S
oo
% 10
[=2]
(=]
-
G---»o----06----0
10_1 3 4
10 10 10
Log of DOF

116

Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h?

Figure 3.40: Error Functions for Algorithms 3.3 with At = h? and Spaces P, —
P, — P, Elements (DOF = 74,371).

Figure 3.41: Error Functions for Algorithms 3.4 with At = h? and Spaces P, —
P, — P, Elements (DOF = 74,371).

117

-1

10

o -~ 093 ~©- 066
~ -O- 0.98 -0~ 0.97

-2

10

Velocity in L2 Velocity in L

Log of Error
[
o|

Log of Error
=
S

& ~
N o
e
~
4 3 -
10 = 4 5 6 105 4 5 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
0 Pressure in L2 . Pressure in L”
10 T T 10 - r
-©- 0.02
-O- 0.93
-1
o o—6—6—o0 .
510 5
w |
G- 0
w“— -~ s 10
o ~ o
B N g
4107 O~ 4 o --6 _ _
~0 o _ ©
-©- -0.34
-O- 0.28
10_3 3 4 5 6 10_1 3 4 5 6
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 3.42: Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h?

and Spaces P, — P, — P; Elements.

118

Figure 3.43: Error Functions for Algorithms 3.3 with At = h and Spaces P, —
P, — P, Elements (DOF = 74,371).

Figure 3.44: Error Functions for Algorithms 3.4 with At = h and Spaces P, —
P, — P, Elements (DOF = 74,371).

119

s Velocity in L2 5 Velocity in L
10 T 10 T
-©- 1.96
-O- 1.95
-3
510 5
0 O
s % 10
D D
S 10" S
10
107 3 4 5 10" 3 4 5
10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 0 Pressure in L™
10 T 10 :
-©- 1.09 -©- -0.01
-O- 0.48 —O- -0.02

Log of Error
\
b

I
|
|
|
o
|
I
|
|

Log of Error
=
S

-1

10_3 3 4 5 10 3 4
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 3.45: Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h?

and Spaces P, — P, — P Elements.

120

Figure 3.46: Error Functions for Algorithms 3.3 with At = h? and Spaces P, —
P, — P, Elements (DOF = 99,075).

Figure 3.47: Error Functions for Algorithms 3.4 with At = h? and Spaces P, —
P, — P, Elements (DOF = 99,075).

121

s Velocity in L2 . Velocity in L
10 10
—-©- 0.98
-O—- 0.98

)
w

Log of Error
=
oI

Log of Error
=
o

10" 3 4 5 6 10" 3 4 5 6
10 10 10 10 10 10 10 10

Log of DOF Log of DOF

Pressure in L2 Pressure in L*

-5~ 0.94 - -0.16
-0- 0.92 -0~ -0.18

Log of Error
[
oI
Log of Error
/
/
0}
|
|
o

10 3 4 5 6 10" 3 4 5 6
10 10 10 10 10 10 10 10

Log of DOF Log of DOF

Figure 3.48: Error Decay of Algorithms 3.3 (Solid) and 3.4 (Dashed) with At = h

and Spaces P, — P, — P, Elements (DOF = 99,075).

122

Figure 3.49: Error Functions for Algorithms 3.3 with A¢t = h and Spaces P, —
P, — P, Elements (DOF = 99,075).

1

il i

Figure 3.50: Error Functions for Algorithms 3.4 with At = h and Spaces P, —
P, — P, Elements (DOF = 99,075).

123

3.7.4 Example : Singular Solution

We obtain quite reasonable numerical results of gauge methods for the smooth
example in subsection (3.7.1), but their performances for the singular solution are
too bad to be applied to an unknown regularity problem. The corner singularity of
the exact solution make big error on the boundary derivative, and it is represented
as a pick on the corner even velocity in the Figure 3.52. This pick make the

convergence of velocity error slow down, and the error of pressure increase in

Figure 3.51
o Velocity in L2) Pressure in L2
10 T - 10 v v
8 8
T oo
5107} \ 5 10'}
j=2 j=2)
o o
- —
1072 3 : 4 : 5 6 100 3 : 4 5 6
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 3.51: Error Decay of Gauge Method Algorithm 3.1 with At = h and

P2 — P1 —P3 Elements.

124

Figure 3.52: Numerical Solution of Gauge Method Algorithm 3.1 with At = h
and P, — P, — P3 Elements (DOF = 158,119).

125

Chapter 4

Iterative Solvers for the Stationary Stokes

Equations

In this chapter we investigate the coupling of the finite element method with the

the gauge method and related projection methods. Of special interest is the role

of compatibility between the various discrete spaces involved (discrete inf-sup).

In order to focus on space discretization alone, we study the stationary Stokes

system:

(

\

1
—EAU—I—Vp:f, in €,
divu =0, in €,
(4.0.1)
u=0, on 0f),

/de:O.
Q

Since the gauge method requires the evaluation of boundary differentiation of

phase variable ¢, we discuss their variational computation in Section 4.1. We

introduce a finite element gauge method in Section 4.2 and present several nu-

merical experiments. They show that the discrete ¢ must have higher degree

polynomial than that of velocity for stable computations. This represents a con-

126

siderable computational cost associated with the gauge method, because ¢ is just
an artificial variable. Reinterpreting the gauge method via change variables, we
construct Gauge-Uzawa method in Section 4.4, and its rate of convergence. We
also study the relation between Gauge-Uzawa and Uzawa methods. In Section
4.6, we find the rate of convergence for the Uzawa algorithm. Brezzi and Fortin
[1] proved its convergence using the Schur complement properties, provided the
relaxation parameter o for the Uzawa method satisfies 0 < o < 1. Our result is
that the rate of convergence is 1 — 2032 + o232, where 3 is the inf-sup constant.
On the other hand, This insists that the convergence range for « is from 0 to 2,

and the optimal value for « is 1.

4.1 Variational computation of boundary differ-
entiations

A key difficulty in actual computations with gauge methods is to provide accurate
o ¢n+1 8¢n+1

approximation of boundary derivatives or on 0f2. We recall now a

ov or

variational approximation of boundary derivatives. First we consider the Laplace

equation

—A¢p=f, in),
(4.1.1)
¢ =0, on 0%,

0
and approximation of the normal derivative —¢ Integrating (4.1.1) by parts

ov

against ¢ € H'(€2), we find the variational expression

__ [¥
_/QA¢¢dx——/aQ 5deJr/QVWzbdX (4.1.2)

127

09
e 0
. ¢ .
Figure 4.1: e 0 at Each Corner Provided ¢ = 0.
v
or
9¢
Sowdr =~ [fudx+ | VoV (41.3)
aq oV Q Q

where the unit normal v is well defined except at corners. Equality (4.1.3) defines
g—lqj €H : (692) uniquely as a linear functional in H2(9Q) (Trace space of H'(Q)).
One goal is to use a similar expression to defined the discrete counterpart. To this
end, we follow Pehlivanov et al [3, 20]. The first issue is the concept of normal
derivative, at a corner. Since ¢ = 0 on 0f2, the tangential derivatives vanish, and

so does V¢, at a corner (see Figure 4.1). We thus impose

¢
o = 0 at corner of 0. (4.1.4)

Let ¥ = K be a shape-regular quasi-uniform partition of €2. Let B, be a conform-
ing finite element space containing piecewise linear and let B! be the boundary

finite element space
B) = {w, € B, : w, = 0 at the interior and corner nodes of Q}. (4.1.5)

We also define
B) = {wp € Hy() : wy, = 0 on 9Q}. (4.1.6)

128

0o

or =)

T Oy =0
—>
—p

Figure 4.2: 99 = 0 at Each Corner Provided 09 =0.
or Oov

Let ¢, € BY be the finite element solution of (4.1.1), namely,

%em:/vmWWM=/MM@V%€M- (4.1.7)
Q Q
In view of (4.1.3), we define the approximate normal derivative 9, ¢y, to be:
oneB: [doundr=— [fuix+ [oTundx
b @ & (4.1.8)
Yoy € IBZ

Lemma 4.1 If f € H*(Q) and ¢ € H*(Q), then

l2.0)- (4.1.9)

10,6 — Budnllor < ChE (6llyq + 1If

In Algorithms 3.3-3.4 of Chapter 3, as well as Algorithm 4.1 and 4.2 below,

derivative 0, ¢} can be calculated by the variational formula:

@ﬁ%ﬂ:—/@w#%¢+/Vﬁvmw,
Q Q

V’(ﬂh €]B(;L

@Wemz/

o (4.1.10)

Now we consider the approximation of tangential derivative d,¢ on 0f2 provided

¢ does no longer vanish on 0€2. Integration by parts of —A¢ = f yields for all

129

3¢"+1 3¢"+1
=0 0
ov ? or 7
a¢n+1
— 1, 5 = 0
Figure 4.3: Difficulty of Variational Formula in 3D
Y€ H'(Q)
—dll= [V 1vyd
/BQ 7Y / ¢curl Pdx. (4.1.11)
If ™ € By, is the finite element approximation of ¢, then the discrete of (4.1.11)
reads:
n b . a¢h n 1
0,0, €B; : 5 Ypdl = | Vepcurl Ypdx, Vi, € H'(Q). (4.1.12)
o9 Q

Formula (4.1.12) can be used to approximate 0, ¢} in 2d. However, in 3d we have
two orthogonal tangential differentiations, and (4.1.12) do not make sense any
longer. Moreover, the tangential derivative along an edge in 3d may not vanish
even though 0,6 = 0 (see Figure 4.3). These are two serious limitations for the
use of Algorithms 3.1-3.2 in 3d, which are those better behaved in 2d. Dealing
with boundary derivatives is indeed a critical computational issue, and a serious
drawback of gauge methods. We will show in Section 4.4 how to reformulate the
gauge method, thereby giving rise to the Gauge-Uzawa method which preserves

all advantages of the the former but does not deal with boundary derivatives.

130

4.2 Space Discretization via Gauge Method

The purpose of this section is to introduce a finite element gauge method for
the stationary Stokes problem and discuss compatibility conditions among the
discrete space for velocity u, pressure p, and gauge variable ¢. To introduce a
finite element discretization, we let (V,,P,) be the discrete spaces for velocity

and pressure and R, be

Ry, = {7 € C°(Q) : W]k € P(K), forall K € ¥} and

(4.2.1)
R?l:{’yheRh :’thOOIlaQ}

where P(K) is a polynomial spaces of degree > 1 fixed independent of K € ¥. To
compute finite element solution af™' which is not 0 on 95, we define a extension

operators x,, and X, from B to V,, such that Vg, € BY,

f

Xv(gn) =0, X-(gn) = 0, at all interior nodes,

$ Xu(gn) v =—0gn Xr(gn) v =0, at boundary nodes, (4.2.2)

X’T(gh) -7 =0, Xr(gh) -T = —gy, at boundary nodes.

\

We estimate easily x,(gn) = (up, vs) by solving the linear system

Up - V1 + Up - Vo = —gp (12.3)
Vp V1 Fvp v =0,
and vanishing at all interior nodes. The value x(g5) can be done similarly. Then
ayt! can be split by a}t! = apt! + x,(0,¢7), where a}*! is a function in VY.
The gauge Algorithm 3.1 in the present simpler setting can be regarded as an

iterative procedure.

Algorithm 4.1 (Gauge Algorithm 3.1 for the Stationary Stokes problem) Start

with initial value ¢9 = 0.

131

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Find a*t' € VO such that
— <Va"+1 Vi) = (£, va) — é (Vx+(0-97) , Vi),
Vv, € VY,
Find a}*!' € V,
ap™t = aptt 4+ x-(0-¢7),
Find ¢}*' € Ry, such that

<V¢)”+1 V5h> <d1V a"“ 5h>7 Vo, € Ry,

Find 0,¢}*" € B such that
<8 el 5h>r <d1v a"Jr1 (5h> + <cur1 ¢"+1 curl (5h>
V(Sh € IBZ,

Find a}™' € VO such that

<un+1 Vh> <an+1+XT ¢Z+1 r¢h vh>+<V¢"+1

Vv, € V?L,
Find u}*" such as
uptt =W — X (007 - 0,47,
Find p}™' € Py, such as
(ot) = == <v¢"+1 Vo), Vo € Py

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

Remark 4.2 We need to do iteration steps 1-4 for Algorithm 4.1, because the

values of Steps 5-7 is not required to estimate for the first 4 steps.

132

Similarly, the gauge Algorithm 3.2 can be viewed as an iterative procedure to

approximate (4.0.1).

Algorithm 4.2 (Gauge Algorithm 3.2 for the Stationary Stokes Problem) Start

with initial value ¢° = 0.

Step 1: Find a}™ € VO such that (4.2.4),
Step 2: Find a}™ € V}, such that (4.2.5),
Step 3: Find ¥} € R} such that

(VYptt, Vo) = (rot a™*", 6,), Vén € RY, (4.2.11)

Step 4: Find 0,4} € B such that
(Outn , Op)p = — (ot apth, 6,) + (Vept", Vé,), Vo, € BE. (4.2.12)
Step 5: Find u}*' € V9 such that
(uptt, v) = (curl " vi) + (- (Outn) , Vi) ,VVh €V, (4.2.13)
Step 6: Find u}*' € VO such that
uptt =yt — X, (0,4n), (4.2.14)
Step 7: Find ¢} € V}, such that

Vo"tt = u"tt — a" ! (4.2.15)

Step 8: Find x,(0,¢"™) from V¢™* in step 7,

133

Step 9: Find pi*! such that

1,
<p"+1 , 6h> =" <d1v ahb+1 , 5h>

(4.2.16)

Remark 4.3 We need to do iteration steps 1-8 for Algorithm 4.2, because the

pressure in Step 9 is not required to estimate in the iteration iteration.

The gauge Algorithm 3.3 can be can be represented for (4.0.1).

Algorithm 4.3 (Gauge Algorithm 3.3 for the Stationary Stokes problem) Start

with initial value ¢) = 0.
Step 1: Find a}™" € V9 such that
VA, Vv = {6, i) — 2 (Y (0d)), T,
Vv, € V%,
Step 2: Find aZ“ eV,
=&+ X (0.97),
Step 3: Find ¢} € R) such that

(Vgptt, V6,) = (divart', 6,), V6, € R,

Step 4: Find 0,4} € B such that
(8,601, 64), = — (dival™l | 8,) + (V@+!, V6,),
V6, € B,
Step 5: Find u}*' € V) such that

ﬁZ_H) Vh> = <az+1 + Xu(au¢z+1 - au¢g) ’ Vh> + <V¢Z+1) vh>)

VVhEV%,

134

(4.2.17)

(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

Step 6: Find u}t' such as

upt =yt - (0,67 - 0,67). (42.22)

Step 7: Find pi*! € Py, such as
VL 1 : n
(pptt, o) = e (divapt', 6,), Vo, € Py, (4.2.23)
Remark 4.4 Algorithm 4.3 is needed to iterate steps 1-4. As we already talked

in Remark 3.3, the pressure for Algorithm (4.3) does not converge to exact solu-

tion.

The gauge Algorithm 3.4 can be can be represented for (4.0.1).

Algorithm 4.4 (Gauge Algorithm 3.4 for the Stationary Stokes Problem) Start

with initial value ¢° = 0.

Step 1: Find a}"" € VO such that (4.2.17),
Step 2: Find a}™ €V}, such that (4.2.18),
Step 3: Find ¥} € Ry, such that

(V™ , Vo) = (rot a™*, 6p), Yoy € Ry, (4.2.24)
Step 4: Find 0,4} € B such that
(0, On)p = — (ot ap™", 6,) + (curl ¢}, curl 4,), Vo, € Bf. (4.2.25)

Step 5: Find ujt' € VO such that
<ﬁ2+1) Vh> = <C'I,II'1 wn+1) Vh> + <Xl/(a7'wh)) Vh))

(4.2.26)
Vv, € Vg

135

Step 6: Find u}*' € V0 such that
u = @ =y, (9,0), (4.2.27)

Step 7: Find ¢} € V), such that

V¢n+1 — u’n+1 _ an+1’ (4228)

Step 8: Find x,(0,6™") from V" in step 7,
Step 9: Find pi*' such that

1,
(", 6n) = — - (divaj™!, 6) (4.2.29)

Remark 4.5 Algorithm 4.4 is needed to iterate steps 1-8. As we already talked
in Remark 3.3, the pressure for Algorithm (4.4) does not converge to exact solu-

tion.

4.3 Simulations and Conclusions for the Gauge

method

We report here numerical experiments with Algorithms 4.1-4.4 and examples
1.3.1 for several finite element spaces for velocity, pressure, and gauge variable as

follows:
P—P —-P, Pp—P - P, (4.3.1)
and

P,—P —-P, P,—P —P,, P,—P —Ps (4.3.2)

136

All finite elements are continuous, and the pair P, — P; is the well known stable
Taylor-Hood combination. We stress however that the combination of (4.3.1) do
not satisfy the discrete inf-sup, and that Algorithms 4.1-4.2 do not necessarily
converge to the solution of the discrete saddle point formulation of (4.0.1). We
also point out that the calculation (4.2.10) and (4.2.16) of pressure is numeri-
cally unstable (numerical differentiation). We present experiments for Dirichlet

Algorithms 4.3-4.4 in subsection 4.3.2.

4.3.1 Numerical Experiments for Algorithms 4.1-4.2

We first discuss for Algorithm 4.1. We observe the oscillations of velocity and
pressure error across the interelement boundaries of the macrotriangulation of
Figure 1.1 (a) (Lake of cancellation effects), and pressure peaks at the corners.
The latter are so pronounced that there is no pointwise convergence of pressure
for spaces P, — P, — P, and P, — P, — P; of Figures 4.4-4.10. Convergence of
pressure is restored by increasing the polynomial degree of ¢ (see Figures 4.7,
4.13, 4.16). The spaces P, — P; — P; of Figures 4.17 and 4.18 lead to the smallest
error for both velocity and pressure. We next discuss for Algorithm (4.2). In
striking contrast with Algorithm 4.1, the unstable spaces P, — P, — P; of Figures
4.4 and 4.6 show pointwise convergence and better accuracy in L2. All other
experiments are similar to those of Algorithm 4.2.

In summary, we have the following conclusions for Algorithms 4.1-4.2:

e There seems to be a compatibility condition between spaces for pressure p

and phase variable ¢ (the latter must be of higher degree than the former);

e The spaces of velocity and pressure seem to be less critically coupled (see

space P, — P, — P,);

137

s Velocity in L2 . Velocity in L
10 T T 10 - r
-©- 0.94
-O- 0.89
-3 -2
§ 10 § 10
w |
S ks €}
g g o
410 4107 oL
O.
To
10_5 2 3 4 5 10_4 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 0 Pressure in L”
10 T T 10 r
-©- 0.84
-O- 1.53
) Q
- ~N
§ 10 ~ © E §
iy ~ T a
k) A ~ o ks 10 > ~
8’ -3 ~ 8’ \O\
-110 ~ 3 N
~ ~
o a
-©- -0.17 S
-O- 0.99 he)
10_4 2 3 4 5 10_2 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.4: Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

P —-P —-P.

e The best space combination is P, — P, — Py (see Figure 4.16), but there
is a substantial computational effort in dealing with P;. This combination
performs similarly to the P,— P; Gauge-Uzawa method of Figure 4.34 below,

which requires much less computational work and is thus preferable;

e The link between discrete space in via the boundary condition in (4.2.4)-

(4.2.5). We do not know how to apply the saddle point theory of [1, 12] to

this unusual formulation.

138

Figure 4.5: Error functions for Algorithm 4.1 with P, — P, — P;.

Figure 4.6: Error functions for Algorithm 4.2 with P, — P, — P;.

139

s Velocity in L2 5 Velocity in L
10 T T 10 T T
-©- 2.00 -©- 1.92
-O- 2.00 -O- 1.91
-3 -3
5 10 5 10
iy i
© S
g . g .
J10 -10
10_5 2 3 4 5 10_5 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 0 Pressure in L™
10 10 T T
-©- 1.52 -©- 0.99
-O- 1.52 -O- 0.99
-2
510 S
i T
S % 10
D D
3 1073 3
10_4 2 3 4 5 10_2 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.7: Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with
P —-P —-P

140

-5 B s

x 10 S x 10

\ I
“‘(‘N
R,
llllpi:““:‘\‘
Hi
it ‘| o
|"\v\‘\~'.\'|‘|‘4“|,n i
‘\"‘“\'\':ly"y‘“\‘":“ “‘:1.":'. :.:"l..l.\.“u .\’l.'

\\‘ y' i ,|“' |1“||. i ! l" .l“t“ ‘ll |

(i O
'/,//u’/:, ,A ‘«\\“\

Lo
il ’l"/'l"«/:'w u‘ i .v‘"y\‘\
il t/" "f’/’l"/"wy!"ﬂ" ',!‘v,t.n,ﬂ.n
il "/’Hu fhi .t\‘,v,n.u'“
('II’//l/ "”/’ /“' "“ !“ |" 0| |‘|" .l"l'u ‘\“
@ e

s :1',/,‘,'.\ .\..\ ,m,"

Ry
L ‘wﬂ| i W

u v b
5 . ;
x 10 x 10
2 2
|
ot
'# %‘; ‘;‘\‘,‘{::\\\‘\“
Ul'l” u\ i ;
'l"l(Ill, ';\mn\‘ i ,/,’,,’,,l "’(”/I/‘N‘\i":""""\ o
0 L "","‘ iy ‘l 0 o i /,l,”wl ‘\w‘ ‘," \:'.,‘.'v.rv‘“‘,‘“,,\ \
{ /u IH)| A “
{;;I//};}(:I'I;’)I' I,/’Q:,‘ :\ :|| ,h' 't':.u'.:‘.n :’.1 f,i" (\\\\N\m {
W
" :'l/(,r v*‘ |" il ‘\l”ﬂ
-2 Il “,wmn \’\’Wﬂ !
1 w(ll

Figure 4.9: Error functions for Algorithm 4.2 with P, — P, — P;.

141

Velocity in L2

Log of Error

—-©- 1.01
-O- 0.99

10* 10
Log of DOF

Pressure in L2

Log of Error
=
S

-3

—-©- 0.89

10
10

10* 10
Log of DOF

Velocity in L

10

Log of Error
[
o|

-3

—-©- 0.97
-O- 0.87

10 3 4 5
10 10 10
Log of DOF
L Pressure in L”
10 .
. 9’/9/—9’—0
§ 10
i
©
[=2]
S 1
10 G -—-—95----6----0
-©—- -0.09
-O- -0.05
-2
10 3 4 5
10 10 10
Log of DOF

Figure 4.10: Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

P,—-P - P

142

Figure 4.11: Error functions for Algorithm 4.1 with P, — P, — P;.

x10™ S x 107

n||\ S
i ‘ﬂé.v‘&;,\.\x;\‘,\
‘:: u i i B \\V i
‘\““h’:’:'l il i At
“\‘ it il
i
s
. ‘M\

"l
il
H i Ul 0
il

Figure 4.12: Error functions for Algorithm 4.2 with P, — P, — P;.

143

. Velocity in L2 5 Velocity in L
10 T 10 -
-©- 1.90
_4 -3
§ 10 § 10
iy i
© S
g g
J10 -10
10° 3 4 5 10° 3 4 5
10 10 10 10 10 10
Log of DOF Log of DOF
> Pressure in L2 o Pressure in L™
10 T 10 T
-©- 1.59
-O- 1.52
510" 5
0 5,
© 5 10
D D
o 4 - o
107 3 4 5 10° 3 4 5>
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.13: Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with
P, — P — P,

144

-5 : -3

x 10 s - x 10

..'-'m.:‘
B /.:.:«7

e g
U it
i w\,',m\m\\,\'m\\‘“‘“\\\“\‘,q

s

. | (/

i
e
ym\' ““\mm
I
Huit \V\ \\\‘

s

\

(KA u\“m i \m
/w'a".’s,-,a i iy T
-2 I‘(”‘{// //’ l,‘?ff};f A m\\““\'v\\\ ,"\“\“\\\\\'»‘\\\‘\\\““m'y‘ >
1 I /”l (”:/' A v“\‘,“n\\‘
4 9/;;4:\.\\“\‘

Figure 4.14: Error functions for Algorithm 4.1 with P, — P, — P,.

x10° x10° x10°

o
///,;/,’/’:,,:, i
i :u f‘:"”\ i
A ll,’l,’t,”,’:,"z' w n,\w u\\\“‘.‘
O Lyt /,,'«l ’/,"u t‘ p\" \‘\ q‘\‘,‘,v
< wl”’l,/”//,/”lll,”/”/g’,/"ﬁ"/lll"”/"l" ||y||‘| |l‘ i “w".l h“
il Ui
\\“\‘,’//g,/;:,,/,,:,',g,’;,,,,p,'z, ,‘m‘ i !‘ il |‘ 'h"

Il

. . ' :
“~f~?'N//NWWW’ =
Gy . -

{ | /u"l'

(X \' \,‘.‘m
“""‘“‘;“)}‘fiull’l‘”"

il
i

Figure 4.15: Error functions for Algorithm 4.2 with P, — P, — P,.

145

) Velocity in L2
10
-©- 3.01
-O- 2.99
10°
S
TR
% 10
[=2]
o
-
107
10_8 4 5 6
10 10 10 10
Log of DOF
> Pressure in L2
10 r
-©- 2.00
-O- 2.00
-3
§ 10
w
©
g
10"
10_5 4 5 6
10 10 10 10
Log of DOF

Log of Error

Log of Error

=
o

-7

10

10

-1

10

0
N

=
o

N
o
&

-4

10

10

Velocity in L

—-©- 2.90
-0- 2.90

10* 10° 10°

Log of DOF

Pressure in L”

—-©- 1.99
-O- 1.99

10* 10° 10°

Log of DOF

Figure 4.16: Error Decay of of Algorithms 4.1 (Solid) and 4.2 (Dashed) with

P, — P — P

146

-7

x 10

B
A
s

o
i
i

)
R

XS
)
M

\

R

i\ |Y‘ d

i
iig

i
‘:‘\“‘\'

o

e
R

Figure 4.17: Error functions of Algorithm 4.1 with P, — P, — P,
3

x 107

Figure 4.18:

X
i
pN
Al
e
ol
s

o

0
\
il

b
o

Aol
i
O
e
u\\‘\\!‘\‘\\'

W
i

A"\‘:
I
‘;!‘v
0

)

|

/

Error functions for Algorithm 4.2 with P, — P, — P;

s Velocity in L2 . Velocity in L
10 T T 10 - .
-©- 0.31
-O- 1.18
-3 -2
iy i a
© S >l
§, 1 4 §’ 1 -3 O ~
0 0 ~a. .
S)
10_5 2 3 4 5 10_4 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 . Pressure in L™
10 T T 10 T T
-©- -0.03
-O- -0.02
S S
iy i
© ©
D D
o o
- -
10_2 2 3 4 5 100 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.19: Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

P -P —-P.

4.3.2 Numerical Experiments for Algorithms 4.3-4.4

In this subsection we present numerical experiments for Algorithms 4.3-4.4. By
the incompatibility condition in Remark 3.3, the pressure for the Algorithms 4.3-
4.4 which are imposed Dirichlet condition do not pointwisely converge to exact
solution for any finite elements spaces (see Figures 4.19, 4.22, 4.25, and 4.28).
Even though the errors of pressure seem to be decreasing in L? space for this
examples, it may not true for other problems. Also the order of convergence for

velocity is not stable even the best combination P, — P, — Py (see Figure 4.31).

148

Figure 4.20: Error functions for Algorithm 4.3 with P, — P, — P;.

Figure 4.21: Error functions for Algorithm 4.4 with P, — P, — P;.

149

s Velocity in L2 . Velocity in L
10 T T 10 T T
-©- 191 -©- 0.99
-O- 1.79 -O- -0.86
-3 -2
5 10 5 10
iy i
© S
g . 8
J10 -10
10_5 2 3 4 5 10_4 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 . Pressure in L™
10 T 10 T
—-©- -0.03
-O- 0.02
S S
iy i
© ©
D D
3 3
10 3 4 5 10° 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.22: Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

pP—-P —-PB

150

-5 : -5

x 10 R x 10

‘\ n
“‘(i
it
Hlmei:““‘w‘\‘
Hi
il '| X
|"\v\‘\~'.\'|‘|‘t‘p,h t‘.
"el."é.:.:"l,%;.\..\‘lr
\\' v' l' u"\' |‘:|' 0 '.‘ l"|'|“|| All-

it W
'/,//u’/:, ,A N\\\\

Lo
il ’l"/'l"«/:'w u‘ i .v‘"y\‘\
il t/" "f’/’l"/"wy!"ﬂ" ',!‘v,t.n,ﬂ.n
il "/’Hu fhi .t\‘,v,n.u'“
('II’//l/ "”/’ /“' "“ !“ |" 0| |‘|" .l"l'u ‘\“
@ e

s :1',/,‘,'.\ .\..\ ,m,"

Ry
‘u\.u‘\‘u‘":\' "'t'”| i \W

Figure 4.23: Error functions for Algorithm 4.3 with P, — P, — P,.

u v p
-5 -5 :
x 10 x 10
2 2
\
ot
i ' %‘: ‘;‘\‘V‘\‘,:\\\\\
\"I'N “\ i N
W(Il’/ '“\\"\“ e ’/':'//t, ’ﬁ"lﬂﬂ‘#‘.\v\"ﬂ‘\ i
0 | .,j,,n iy by 0 i it u'umuw,‘ .n', :“:,"r"\‘ﬂ‘ﬁ“‘ \
) /u IHH mlw “
”/;// /l/';}(:ll,"l,'l IM :‘ :|| “y' '.‘:u'.:‘.u ::‘ ‘,i“ (\“\Nw\ q
//,l,‘«':'»,l '”H '.I,'nf':\l
’; ,I,'),‘, y\d ‘v' .v‘.l' W
-2 Ul “,r“m’} "‘W\’Il .
1 U

Figure 4.24: Error functions for Algorithm 4.4 with P, — P, — P,.

151

. Velocity in L2 . Velocity in L
10 T 10 -
-©- 0.87
-0- 1.01 9\9\9\@
2 -2
§ 10 § 10
] i o - _ _
5 5 -~
e e _ e . O~ _
-110 T~ o —10 IS
T oo & 064
-9 -O- 0.88
10" 3 4 5 10" 3 4 5
10 10 10 10 10 10
Log of DOF Log of DOF
0 Pressure in L2 . Pressure in L™
10 T 10 T
-o- 0.54 —©- 045
-O- 0.98 —o- 007
-1
5 10 O\G\@\e] S
& I
= % 10
g L%~ g
- 10 ~O— _ - o
T T oo G -—--—o0-—-—-~"°97 777
e
10°L y s 107 s
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.25: Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with
P,—P - P

152

Figure 4.26: Error functions for Algorithm 4.3 with P, — P, — P;.

x10™ S x 107

n||\ S
i ‘ﬂé.v‘&;,\.\x;\‘,\
‘:: u i i B \\V i
‘\““h’:’:'l il i At
“\‘ it il
i
s
. ‘M\

"l
il
H i Ul 0
il

Figure 4.27: Error functions for Algorithm 4.4 with P, — P, — P;.

153

s Velocity in L2 5 Velocity in L
10 T 10 -
-©- 1.90
-O- 1.94
10°
5 5
= 5 (€8
W, [T -
5 10 % 10 R
g g &
| | ~
5 ~
10 ~
“&- 1.00 o<
-O- 0.99 b ¢
10° 3 4 5 10" 3 4 5
10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 0 Pressure in L™
10 T 10 :
-©- 0.99
-O- 0.95]
87;—7__5—7-;8*—* g
5 5
g, i
5 10 S
D D
o o
- -
-©- 0.00
-O- -0.04
10° y s 107 s
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.28: Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

P,— P — B

154

-5 : -3

x 10 s - x 10

..'-'m.:‘
B /.:.:«7

e g
U it
i w\,',m\m\\,\'m\\‘“‘“\\\“\‘,q

s

. | (/

i
e
ym\' ““\mm
I
Huit \V\ \\\‘

s

\

(KA u\“m i \m
/w'a".’s,-,a i iy T
-2 I‘(”‘{// //’ l,‘?ff};f A m\\““\'v\\\ ,"\“\“\\\\\'»‘\\\‘\\\““m'y‘ >
1 I /”l (”:/' A v“\‘,“n\\‘
4 9/;;4:\.\\“\‘

Figure 4.29: Error functions for Algorithm 4.3 with P, — P, — P,.

x10° x10° x10°

o
///,;/,’/’:,,:, i
i :u f‘:"”\ i
A ll,’l,’t,”,’:,"z' w n,\w u\\\“‘.‘
O Lyt /,,'«l ’/,"u t‘ p\" \‘\ q‘\‘,‘,v
< wl”’l,/”//,/”lll,”/”/g’,/"ﬁ"/lll"”/"l" ||y||‘| |l‘ i “w".l h“
il Ui
\\“\‘,’//g,/;:,,/,,:,',g,’;,,,,p,'z, ,‘m‘ i !‘ il |‘ 'h"

Il

. . ' :
“~f~?'N//NWWW’ =
Gy . -

{ | /u"l'

(X \' \,‘.‘m
“""‘“‘;“)}‘fiull’l‘”"

il
i

Figure 4.30: Error functions for Algorithm 4.4 with P, — P, — P,.

155

. Velocity in L2 5 Velocity in L
10 T T 10 - .
-©- 1.93 -©- 1.00
-O- 1.00
-4
510 S
0 O
© 5 10
D D
o 5 s}
=10 o
10_6 3 4 5 6 10_4 3 4 5 6
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
a Pressure in L2 0 Pressure in L™
10 T 10 T
-©- 1.00 - _
-0~ 1.00 & © ©
S S
o, i
5 10 S
D D
o o
- -
-©- 0.00
-O- 0.00
10_3 3 4 5 6 10_1 4 5 6
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.31: Error Decay of of Algorithms 4.3 (Solid) and 4.4 (Dashed) with

P, — P — P

156

-7

x 10

B
A
s

o
i
i

)
R

XS
)
M

\

R

i\ |Y‘ d

i
iig

i
‘:‘\“‘\'

o

e
R

Figure 4.32: Error functions of Algorithm 4.3 with P, — P, — P,
3

x 107

Figure 4.33:

X
i
pN
Al
e
ol
s

o

0
\
il

b
o

Aol
i
O
e
u\\‘\\!‘\‘\\'

W
i

A"\‘:
I
‘;!‘v
0

)

|

/

Error functions for Algorithm 4.4 with P, — P, — P;

4.4 Gauge-Uzawa Method for Stationary Stokes

The Gauge-Uzawa method is a reformulation of Algorithm 4.1 which eliminates
the boundary computation. We recall that

1
— g At =1, inQ

Y

(4.4.1)
a"tl = —V¢", on 99.

We introduce the auxiliary velocity U™ defined to be a"t! = a"*! — V¢", and

the momentum becomes

1 1
—R—Aﬁ"+1 + R—VA(;S” =f, inQ,

€ € (4.4.2)
u"tt =0, on 01).

1
Since R—AQS" = p" according to (4.2.10) and (4.2.16), we can rewrite (4.4.2) as
e

follows: . 1
—R—Aﬁ"“ + R—Vp" =f, in(,
e e (4.4.3)
i+ =0, on 0f).
If we set p"t! = ¢! — @™ then we can write
un—|—1 — an-l—l + V¢n+1 — ﬁn—l—l + v(¢n+1 _ ¢") — ﬁ"+1 -+ Vpn'i'l, (444)
and
1
Pt = AP = pt — div Gt (4.4.5)

Re

This allows us to remove the variables a™ and ¢" and reformulation Algorithm 4.1
in terms of U" and p™ by showing (4.4.3)-(4.4.5). The connection with the Uzawa
method, namely (4.4.3) and (4.4.4), is now obvious. The discrete Gauge-Uzawa

method now reads as follows.

158

Algorithm 4.5 (Discrete Gauge-Uzawa Method for Steady State Stokes) Start

with pY) = 0.
Step 1: Find 0} € VO such that
o <VAn+1 Vw) = (ph, divwi) = (f, ws), Yw, €V}, (4.4.6)
Step 2: Find p}™' € Ry, such that

(Vpptt, Vi) = (div ™, o) Vi, € R. (4.4.7)

Step 3: Update
uptt =amtt + vt (4.4.8)

Step 4: Find p"“L1 € Py, such that
<Pn+1, Qh> =Pk,) — 5= <Vpn+1 VC]h>7 Van € Py. (4.4.9)
Remark 4.6 (Boundary Derivatives) We stress that no boundary differentiation

is required in Algorithm 4.5. This makes it applicable in any dimension. We also

note that, except for Steps 2 and 3 This scheme reduces to Uzawa.

Remark 4.7 (Discrete Divergence Free Velocity) The velocity of Uzawa is not

discrete divergence free. However, note that (4.4.7) and (4.4.8) yield
(uptt, V) = (Vpptt, Vg) — (divapth, o), Vi, € Ry. (4.4.10)
Therefore, even though u"Jrl is discontinuous, its divergence is orthogonal to Ry,.

We define (up,pp) € Vi, X Py, to be the solution of the following discrete Stokes

problem:
1 .
T (Vuy, ,, Vwy) — (pp, divwy) = (£, wp), Vw, € Vp,
€ (4.4.11)
<uh’ vqh) =0, Vg, € Py.

159

Then we have the following error bound [1, 12].

= wallo + Al — will, + kllp = pilly < CH (ful o + lpl,) . (4412)

To study the convergence of (u}},p}) of Algorithm 4.5 to (us, pr), we introduce

the error functions
Tnt+l _ =ntl n+l _ n+1 ntl _ n-+1
Eff =u,—u}"™, Ef7" =uw—u"™, e =p,—pp . (4.4.13)

The error functions EZ“, E}*! have the following properties:

Et! €V, (4.4.14)
and
Eptu, — G5 = - w4 VT = Bp 4Vt (4.4.15)
Furthermore, if P, C R, then
(Ep*, Van) =0, Vg € Py. (4.4.16)

The restriction P, C R, means that we are dealing with continuous pressures.
Since the inf-sup constant satisfies 0 < § < 1, by Lemma 1.11, the following
theorem shows convergence of Algorithm 4.5 provided the inf-sup condition holds

and]Ph g Rh.

Theorem 4.1 Let the inf-sup Assumption 4 hold and let the pressure space Py,
and gauge variable space Ry, satisfy P, C Ry,. Let 8 < 1 be the inf-sup constant

in Assumption 4 Then we have, for all iteration step n,

1 ~n " .
Tet IVER G+ ller ™ M5 < llexlls, (4.4.17)
n 1 -n
lerllo < mHVEhHHo, (4.4.18)

e o < /T = B2llello- (4.4.19)

160

PROOF. By subtracting (4.4.6) from (4.4.11), we have

1 =~ .
E <VEZ+1, VWh> - <€Z7 div Wh> = 07 vwh € Vh' (4420)

Now, we choose wj, = EP'. Since et C C?(Q) by definition of P, in (1.2.38),

using (4.4.15), we get

1 An n An
—IVERHIE = (Ve By
(4.4.21)
= —(Ver, B} + Vo).
By (4.4.16), we have (Ve , Ef™") = 0. and, by (4.4.9), we deduce
1 An n 7
LB = — (Ve Vi)
= Re <€Z) n+1 - ph>
(4.4.22)
= —Re(ep, ep™ —ep)
= (|| RIS = llehllo — llep™ — ehllo) -
Thus we obtain
1 An n n n
2oz I VEL Mo + _||eh+1||0 —||€h||§ —||6 T —erls- (4.4.23)

Now we estimate ||e} ™" — 7|2 in (4.4.23), using (4.4.6)-(4.4.11) as follows:

n+1

m—enllp = <p"“—ph,ph —ph)

e

= —ﬁ (Vo Vprtt = pp))

1 n+1 n+1 n (4424)
= T <d1vE eh>

< —||le Eplolle ! = ehlo-

Since we have ||div E'*!||o < ||[VE?*!||o by Lemma 1.9, (4.4.24) becomes

I L on
lep* —erllo < Tz i E; g < @HVEZ*III%- (4.4.25)

161

So (4.4.23) changes into
1 An n n
S IVERE + e B < el (4.4.26)
which is (4.4.17). Now we prove (4.4.18). Since e}} € Py, by Assumption 4, there
exists a function v, € V}, such that
. n n 1 n

(divva, ep) = [lepll; and [|Vvallo < glenllo (4.4.27)

By (4.4.20) and (4.4.27), we get

lexlle = (divva, ef)

<VE"+1 Vvh>

" Re
o (4.4.28)
= —IIVEZ+ ol Vvallo
< 5R —IVEFloller o,
whence
lerllo < BR = [IVE; lo. (4.4.29)
So (4.4.18) is proved. Finally, by (4.4.17) and (4.4.18), we get easily
Bllenlls + ler M5 < llexlls (4.4.30)
or equivalently
lex ™15 < (1 = B2)llexll3: (4.4.31)
This completes the proof. []

162

Velocity in L2 Velocity in L
10 : 10° :
. 10"
510 5
0 -
s % 10
D D
8 10’6 3
-6
10
7 -7
10 ; s 10 = 4 5
10 10 10 10 10 10
Log of DOF Log of DOF
> Pressure in L2 o Pressure in L™
10 T 10 :
o 1.98
-3 -2
§ 10 § 10
iy i
© S
g g
= 10" —-10°
-5 —4
1075 ; s 10 = 4 5
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 4.34: Mesh Analysis of Algorithm 4.5 with Spaces P2 — P1 — P1

4.5 Numerical Experiment for Gauge-Uzawa

We examine Algorithm 4.5 for Example 1.3.1 and report the results in Figure
4.34 and 4.35. Compared with Figures 4.4-4.33, the errors of Algorithm 4.5 are
much smaller than those of gauge methods. Because Algorithm 4.5 does not deal
with boundary values, we can conclude that the relatively big errors of gauge

Algorithms are caused by the boundary approximation.

163

-7 : -7 : -4

x 10 R x 10 s - x 10

Figure 4.35: Error Functions of Algorithm 4.5 with Spaces P2 — P1 — P1

4.6 Uzawa Method

The following Uzawa algorithm is a well known iteration solver of the Stokes

system (4.0.1) (see for instance [1, 9, 12]):
Algorithm 4.6 (Uzawa Method) Begin with an initial guess p°

step 1: Find u™! as the solution of

1
—— AU L VPt =f, inQ,

Re
(4.6.1)
utt =0, on 0f).
step 2: Find p"t!
Pt =" — 2 div u™t, where 0 < a < 1. (4.6.2)
Re

The convergence of Uzawa Method 4.6 is already proved by using boundedness
and coercivity of the Schur complement operator [1], provided 0 < a < 1 is suffi-

ciently small. The main goal in this section is to find more extended convergence

164

rate and optimal « for Uzawa algorithm.

If we compare Gauge-Uzawa and Uzawa Algorithms 4.5 and 4.6 under the
assumptions R, = P, and o = 1, we can see easily that the velocity u”*! in Al-
gorithm 4.6 corresponds to U"*! in Algorithm 4.5. So Gauge-Uzawa Algorithm
4.5 may be viewed as a Uzawa Algorithm with a projection step (4.4.8) into a
divergence free space. So Theorem 4.1 provides a proof of convergence of Uzawa
Algorithm 4.6 provided R, = P, and o = 1.

We now investigate the convergence rate and optimal choice of a for the dis-
crete Uzawa Algorithm 4.7 below. Since the velocity u™*! in Uzawa method is

not divergence free, the pressure space P, does not need to be a subspace of

C°(Q). We thus P, to be a subspace in L?(Q):

Ph = {pn € L*(Q) : pulx € P(K), VK €%, /Qphdﬁ = 0}; (4.6.3)
P(K) are spaces of uniformly bounded degree polynomials with respect to K € ¥.
Algorithm 4.7 (Discrete Uzawa Method) Begin with initial guess p) € P,

step 1: Find u}™ € V9 as the solution of

1 .
o (Vup™t, Vwn) — (pfy, divwy) = (f, wa), Yw, € V). (4.6.4)

step 2: Find p}*™" € Py, such that

O, an) = h 5 an) <d1vu Y), VYau € Py (4.6.5)

We use the following error notations

Ept' =uw, —up™ and eyt =p, —ppt, (4.6.6)

where (u}'!, pi™") is a solution of Algorithm 4.7 and (up, pp) is a solution of

discrete saddle point formulation (4.4.11). We note that < ntl th> for ¢, € P,

165

does not make sense in this context and that <d1v u"“, qh> # 0 for ¢, € Py, in

general.

Theorem 4.2 Let the inf-sup Assumption 4 hold with constant 3. Then we have,
for all iteration steps n,

2a

2R e < el (46.7)
Heh“ Ho (1-2a8%+ 042B2)||eh||0 (4.6.8)
PROOF. By subtracting (4.6.4) from (4.4.11), we have
é (VERT, Vwy) — (e, divwy) =0, Vw), € V. (4.6.9)
Now, we choose w, = E}"'. Then (4.6.9) becomes
é}\vm“”i — (e}, div EpH) = 0. (4.6.10)

By (4.6.5) and (4.6.10),

é”vw,ﬁluﬁ = —{ep, divuj*t)
R
= — (k. pit — i)
4.6.11)
_ _@ n n+1_ (
- a < €h, € eh>
i (e R P
Thus we have
S IR 2+ e 12 = e lE + g™ — eg2 (4.6.12)
Now we estimate He"+1 — eﬁHi. Arguing as in (4.4.24), we get
et = eills < g ldiv BR ™ flen™ = ekl (4.6.13)

166

and
o?
e — i} < ol B2 < S IVEL (a61a)
So (4.6.11) becomes

200 — «
Re?

2
IVEZR o+ [lert|ls < llerlls, (4.6.15)

which implies (4.6.7).

Now we prove (4.6.8). Since e} € P, reasoning as in (4.4.28), we obtain
n|2 < 1 R+l n
||€h||0 = @HV h Ho”eh”m (4.6.16)

or equivalently

el < gz IVER (16.17)

By (4.6.7) and (4.6.17), we get easily
B2 (20— a®)llehll + e g < lleRll, (4.6.18)

whence

e[| < (1 = 2082 + 0262)|en 2. (4.6.19)
Finally the proof is complete.]

Remark 4.8 Consider the function
fla) =1-2a8%+ o*B% (4.6.20)

Since the minimum of f(a) is 1 — % at @ = 1, we conclude that the optimal
value of a is

a=1. (4.6.21)

167

in this analysis. We observe that this results is independent of the domain 2
whereas the eigenvalues of the Schur complement operator, the discrete version
of S = —div (=A)7'V, depend on . It is plausible that for a given Q and
finite element space (V,,P,), a special analysis would yield a better value for «
since Uzawa is simply a Richardson iteration for the Schur complement. It is also
plausible that for a rectangular domain with high aspect ratio, &« = 1 is the only

choice valid for all aspect ratios. This deserves further investigation.

168

Chapter 5

Gauge-Uzawa Method for the Navier-Stokes

Equations

The gauge methods of Chapter 3 impose boundary conditions on the non-physical
variable ¢, which is smoother than pressure. This advantage of the semidiscretiza-
tion in time is not fully maintained by space discretization because boundary
differentiation, as well as interior differentiation to compute pressure, are numer-
ically unstable procedures. Based on the Gauge-Uzawa method for stationary
Stokes equations of Section 4.4, we construct in this chapter the fully discrete
Gauge-Uzawa method for the evolution Navier-Stokes equations (1.1.1). This

method overcomes the difficulties of gauge methods but retain their advantages.

5.1 Motivation of Gauge-Uzawa Method

The Gauge-Uzawa method (GU) is constructed from Algorithm 3.1 by the change
of variable

it = a"t + V" (5.1.1)

169

which was already defined in (3.3.1). Then the momentum equation (3.2.1) in

gauge Algorithm 3.1 becomes

=“n+l . an 1 1
% + (un . V)ﬁn+1 - _AﬁnJrl R

e 2o VA" = (tns)- (5.1.2)

We note that 4" = 0 on 9 according to Lemma 3.4, and that (5.1.2)correspond
to an unconditionally scheme because of the semi-implicit treatment of convec-

n+1

tion. We introduce new variables s"™! and p"*! to treat the higher order term

VA" in (5.1.2),
Sn+1 — Ad)”+1 = —div an+1 — A(bn —div ﬁn-l—l = " — div ﬁn-f-l (513)

and
P = gt — g, (5.1.4)

Then we can formulate the Gauge-Uzawa method as follows:

Algorithm 5.1 (Time Discrete Gauge-Uzawa Method) Start with initial value

§Y =0, and with v’ = u(x, 0).

Step 1: Find U™ as the solution of

utt —u” ~ 1. 1
— 4+ (u" - V) A" — AT+ V" = f(t1), in 9,
At Re Re
(5.1.5)
u"tt =0, on OS).
Step 2: Find p"*! as the solution of
—Ap"T =diva™t?t, in Q,
a n+1 (516)
P _ 0, on Of).
ov
Step 3: Update s™*!
"t = " — diva"t. (5.1.7)

170

Step 4: Update u™*!

u"tt ="t 4 vt (5.1.8)

If necessary, compute pressure p" ! as follows:

n+1 1

ntl _ P n+l
= — 1.
P Iy + Res (5.1.9)

If we consider discrete spaces V;, and P, with polynomial degree at least m + 1
and m so that Assumption 4 is valid, we can define the full discretization via the

Gauge-Uzawa method:

Algorithm 5.2 (Fully Discrete Gauge-Uzawa Method) Start with initial values

sy =0 and the given u}) in Assumption 7.

Step 1: Compute u”Jrl €V, as the solution of

avtt —ur,
< h Ath Wh> FN (LA, w + = <VAn—|—1 Vws)
1 (5.1.10)
_E <Sz , div Wh) = <f(tn+1)) Wh>) Vwy € Vp,
Step 2: Compute phJr € Py, as the solution of
(Vopth, V) = (divapt', ¢,), Vi, € Py, (5.1.11)
Step 3: Update 3"+1 € P, such that
<5n+1, Qh> = (S, qn) — <diV uptt, Qh>a Vg, € Py, (5.1.12)
Step 4: Update u}t!
utt =t + vt (5.1.13)

171

If necessary, compute pZ“ € Py, as follows:

pitt = A + L (5.1.14)
h At Re ™™ - "

We note that u}*! is discontinuous function across interelement boundaries, and

that uf™" is discrete divergence free in the sense that
n+1 _
(up™, Vo) =0, Vb, € Py (5.1.15)

The gauge-Uzawa method not only preserves all advantages of gauge Algorithm
3.1 but also solves all difficulties regarding boundary calculation and space dis-
cretization. A chief advantage of Algorithm 5.2 is that there is no longer boundary
and interior differentiation. This allows us to apply the Gauge-Uzawa easily to
any domain in 2 and 3 dimension. In addition, this scheme is unconditionally
stable and thus applicable to high Reynolds numbers, this is proved in the Sec-
tion 5.2. The final results of this chapter are error estimates for velocity and also
under the realistic regularity assumptions The proof of these theorems is several
lemmas in Sections 5.3 and 5.4.

We know that the exact solution (v(t),p(t)) for (1.1.1) is in H*(Q2) x P*(Q) by
Lemma 1.5 provided Assumptions 1-3 hold. In order to derive more generalized

convergence results, we carry out the error analysis with the space regularity
(v(t), p(t)) € H(Q) x H(Q), where 7> 1. (5.1.16)
Therefore s is 1 in our main theorems. We define a constant as

k = min{s, m}, (5.1.17)

where m is the polynomial degree of pressure p. Now, we state the main theorems

of this chapter:

172

Theorem 5.1 Let Assumptions 1-6 hold. If h?> < C/At, then we have

AtZHV tas1) — W0 < C(AL+ B) (5.1.18)

and

N
At) (HU(th) — o+ [[ultng) — G) < O(A? + h2+D). (5.1.19)

n=0

And the error of pressure is

Theorem 5.2 Let Assumptions 1-7 hold, and let C1h?> < At < Cgh% be valid

with arbitrary constant Cy, Cy > 0. If we have
IVu.(0)]l, < M. (5.1.20)

then we have

N
ALY ||pltasn) =t [lg < C (At + 1) (5.1.21)
n=0

5.2 Stability

In this section, we show that the Gauge-Uzawa method is unconditionally stable.

Lemma 5.1 Let s} € Py, and Q)™ € V) be defined in Algorithm 5.2. Then
we have

s = shlly < [Van ™. (5:2.1)

PROOF. Lemma 1.9 and formula (5.1.12) deduce

[sptt = splle = (sitt—sh, spt! = sp)
(5.2.2)
= —(sp s, divapt) < [|sptt = s vaR -
So we have Hs”“ — SZHO < ||Vﬁ”+1||0, as asserted. m

173

Theorem 5.3 (Stability) The Gauge-Uzawa method is unconditionally stable in

the sense that for all At > 0 the following priori bound holds:
o+ 2 i =+ 3 75511+ 23 9|

L (5.2.3)

el tlo<| h||0+0AtZ||f w21

n=0
PROOF. By choosing w;, = 2At4}"" in the momentum equation (5.1.10) of Al-
gorithm 5.2, we get
2(Upt —up, Ut + 24N (up, apt wpt)

(5.2.4)
Q_At (vartt, vartt) — 2_At (sh, divap™) = 24t (f(tarn) , Ty').

We note that A(u?, 4y, dr"") vanishes by (1.2.61). in view of (5.1.13) and

(5.1.15), we have

2 (T) =2 () — w4 2
1 1) o (5.2.5)
= il = g5 + i = willg + 21V
So the formula (5.2.4) becomes
20t .
o2 bl + ™ =+ 29+ 20 g
Mt (5.2.6)

" <sh , div ﬁ2+1> + 20t (£(tny1) A"+1> Al + As.

Then two right hand side terms can be bounded by Lemma 5.1 and (5.1.13), we

derive

2At <sh , divaptt)

2At
=~ " Re <SZ, SZH - 32>

N (5.2.7)
== (H h“l\o—llshllo—I\S”“—Sﬁﬂﬁ)

YAV Aty
<=2 (smtlls = si?) + 2 vzl

174

and
Ay =2At <f(tn+1), ﬁz+1>

Aty
< OOt 2, + o5 | V|5
Plugging (5.2.7) and (5.2.8) into (5.2.6) deduce
At
i g = il + flui = willg + 20wt g + 50 [VR,
At

20 (55 = ki) < At I

Summing over n from 0 to N implies (5.2.3).

5.3 Error Estimate for Velocity

(5.2.8)

(5.2.9)

In this section, we prove convergence of velocity the fully discrete Algorithm 5.2.

To derive an error estimate under realistic regularity assumptions we have to

deal with the fact that (1.2.12) does not imply u;; € L?(L?). Instead, we handle

the truncation error involving uy; in the weaker space L?(Z) via Lemma 1.7, but

at the expense of the additional difficulty that discrete functions are not in Z,

and so not divergence free. We thus introduce the auxiliary pair (U™, P"*!)

H{(Q2) x L3(£2), which is a weak solution of the following time discrete Stokes

equations including exact convection:

(n+l _ Tn
<% : w> + é (VU™ Vw) — (P divw)

y = <f(tn+1)) W> - N(u(tn+1)a u(tn-i-l)aw) , VW€ H(l)(Q)a

(g, divU™) =0, Vg € L*(Q).

\

We use the following notation:

Gn+1 — u(tn—i—l) _ Un+1 and gn+1 — p(tn+1) — pntl

175

(5.3.1)

(5.3.2)

We proceed by first comparing (1.1.1) and (5.3.1), and estimating the trun-
cation error in L?(0,T;Z*) because div G"™ = 0. We next compare (5.3.1) with

Algorithm 5.2.

Lemma 5.2 Let Assumptions 1-8 hold. Then we have

N N
2 n nll2 At n 2
6"+ 2 l6m = 6ty o Vet < oot 6
and
N
At g < oAt (5.3.4)
n=0

PROOF. The momentum equation (1.1.1) at time ¢ = ¢, is

W (tn41) + (Wtnta) - V)ultngs) + Vp(taga) — éAU(th) = f(tnt). (5.3.5)

By virtue of the Taylor theorem,

u(tni1) —u(tn)
At

+ (u(tnt1) - V)u(tnr) + Vp(tntr)
, (5.3.6)
—EAU(th) =Rup1 + f(tnt),

1 tn+1
where R, 1 = N / (t — tn)uy(t)dt is the truncation error. Then (5.3.6) can
tn

be written in weak form as follows: for all w € H}(Q2), we have

<u(tn+1) —u(ty)

, w> + é (Vutys1), VW) — (pltnsr) , div w)

At
(5.3.7)
= Rat1, Wa) + (E(tns1) , W) = N(u(tni), utni), w).
By subtracting (5.3.1) from (5.3.7), we can get
Gt — Gn 1 "
<T,W> + E<VG’ +1,VW>
(5.3.8)

(g"*", divw) = (Rpt1, w).

176

If we choose w = 2AtG" € H}(Q), then (¢"™ | div G"™!) disappears because

div G™*! = (. Then we have

At s
e - e+ o - @+ S ver < car [ol
By summation over n from 0 to NV,
N
o i+ S lat - e+ B3 var <ot [o

n=0 to

In view of Lemma 1.7, we get (5.3.3). Using now (5.3.3), in conjunction with the

continuous inf-sup condition, there exists w € H}(Q) such that

lg™*Hly = (""", divw)
(}n+& —QGn 1 n
N <T “’>+§<VG VW) = (Rus, W)
|G™ — G”|| 1 n+1
< o (182 L joe s Rl) I
and
n IG™ -G, , 1 n+1
g™ |, < ﬁ(N + oo [[VE g+ Raally) - (5.3.9)
Since

tnt1
IRonl?, < / (= b))yt
tn
o (5.3.10)
< [ol
tn

where o(t) = min{¢, 1}, squaring the estimate for ||¢g"*!||, and multiplying At

yields
2
n+112 C ”(}n+1___(;n“0 CAt n+1]|2
At”g i Ho @ At 52R62HVG i Ho
5.3.11)
CAt [(
+ o [o0l e
tn

177

Adding over n from 0 to N, and using (1.2.12) and (5.3.3) leads to

N N N
syl < £ e - i+ CALSS v
n=0 n=0 n=0
- (5.3.12)
+C At / o(t)|luw(t)|) ,dt < CA,
to
which is the derived estimate (5.3.4). u

Let (UPt!, P € V, x Py, be a discrete solution of the following weak Stokes

equations.

§
(VU Vwy) + (Bpt, div wy,)
S = (Vu(tns1), Vwn) + (VD(tns1) , Wh), Vwy € Vy, (5.3.13)

(ry, divUpt) =0, Vry, € Py,

\

where (u(t,+1), p(tns1)) is the exact solution of (1.1.1) at the time step t,4;.

Now, we define the new error functions

G =u(tn) — Upt, gt = p(tns) — PPYY,
n+1 n+1 n+1 n+1 n+1 n+1 (5314)
Fril — grtt —untl gt = potl _ potl

Then we have the following error estimate [12].

Lemma 5.3 Let Assumptions 1-6 hold. And let the exact solution (u(tni1),
p(tni1)) € HTHQ) x H(Q). Then we have

|GE |, + 2GR, < CR°* (lutas)ll iy + (s) - (5.3.15)
Then we can derive the following Lemma easily,

Lemma 5.4 Let Assumptions 1-6 hold. And let the exact solution (u(tni1),

p(tni1)) € HTHQ) x H3(2). Then we have

G = NG iy + 1VEE oy < M. (5.3.16)

178

Pn—|—1

n+1 n+1 n+1 An—}—l
G U E"+l B
+1
gn
e
n+1 n+1 on+1
p(tn—f—l): u(tn—f—l) nn+1 Fn—|—1 ph ’) uh
n+1 n+1
9y €n
n+l Tn+l
n+ 1 E," Ey
Gy, Pt

n+1
Uh

Table 5.1: The Notations of Error

g2+, < Ch* (Iultas)llys + IpEas)ll,) (5.3.17)

[, < @], + @rl, < Clat+h), (5318)

N N
sty VER < Ay (Ve +[[vat)
n=0 n=0 (5.3.19)
< C(A + h¥),

and

AtZ ™5 < Atz (HQ"HHO + [lgrt) < O(AL+h%). (5.3.20)

Now we use the following additional error functions:

nt+l _ yot+l -+l e+l _ e+l antl n+l _ pn+l n+1
E"" =0 u, E =0 u,”, e =P" —py

Y Y

(5.3.21)

n+l __ n+1 n+1 An-}—l _ n+l _ n+1 n+1 n+1 n+1
Ertl = UMt —uptt, Eptl = Ut - gt = Pl it

see Table 5.1 for the relation between (5.3.14) and (5.3.21). Then the properties

of those error functions are:

Lemma 5.5 (Properties of Error Functions) We have the following relations among

the error functions in (5.3.21):

(B!, V) = (BMY, Vg,) = (F™, Vg,) =0, Vg, € Py, (5.3.22)

179

En-l—l Un-|—1 An—}-l

uj,
(5.3.23)
— Un—|—1 n+1 + vpn—}—l En+1 + V,On+1,
EZLJA — UZJrl AZ+1
(5.3.24)
— UZ_H n+1 + Vpn—l—l En—|—1 + Vpn—kl’
and
Entl — prtl + Ez—f-l and Em = Frtl 4 En—f—l. (5.3.25)
Lemma 5.6 Let sit! € Py be defined in Algorithm 5.2. Then we have
~ 2
5+t — 52| < HVE"+1 (5.3.26)
0
PROOF. By Lemma 1.9 and by (5.1.12) in Algorithm 5.2,
n n 2 n n n
lsi™ =shlly = (57— sk, 8™ —sh)
= —(spth —sp, divupth)
(5.3.27)

_ n+1 n . An—l—l
= <sh —sp,divE >

= s = s | VE"

|
0

! and u}*' are

Our purpose in the following lemma is to show that both u}™
order O(At? + h*) approximations to U™ in L2(). This result will be used to

improve the error estimates to O(At + h**') orders in Lemma 5.10.

Lemma 5.7 Let Assumptions 1-6 hold. And let the exact solution (u(tni1),

p(tns1)) of (1.1.1) be in H¥TL(Q) x H*(Q), and let h* < CAt. Then we have

~ 2
[+ B+ 2 + ZIIE”“ B

, (5.3.28)
< C(At+).

N RN .
+2 Vel + o5 Z |vE,
n=0 n=0

180

PROOF. By subtracting (5.1.10) in Algorithm 5.2 from (5.3.1), we get , for all

\V/Wh € Vh,

Ertl _ En 1 /=
- - . n+1
< N, , Wh> + Toe <VE , th>

n) 1 n
= <P 1 div wh> + Te (Vs wp) (5.3.29)

—N(utnr1), utns1), wa) + N (uh, Gy, wy).
We choose wy, = 2AtEM! = 2AH(E™! — F*™), then (5.3.29) becomes
~ ~ 2\t ~ ~
2(Br - B Byt + S (VEMT, VERT)
Re
~ 2Nt ~
YN <P"+1 . div Eg+1> - <s;; . div E;;+1> (5.3.30)
—IAIN (Ut pyr), W(tngs), EPFY) 4 2A0N (ul, G2t B,
The left hand side of (5.3.30) becomes, by Lemma 5.5,
2(Er - Er, Byt = 2(Et -, B - P
n 2 n n nll2
= [[E™, - IIE"Ils + |[E**" —E"|, (5.3.31)
7 2 n n n
vV - 2 — e

and

201
Re

(VE™!, VE) = 208 (HVE"+1 —<VE"+1,VF"+1>). (5.3.32)

0

181

By (5.3.31) and (5.3.32), the formula (5.3.30) can be split by

2

YAV
= :

HEn—I—lHi B ”En”g + HEn+1 _E ‘VErH—l

lo + +2[[Vo™

PYAN

_ n+l _ |n n+1
=2(E B B+

<VE”+1 vE)

n s Ton 241 n s AN
20t (P divERT) — S (o7, div B (5.3.33)
YN (N(u(tn+1),u(nr), EDFY) — N (ul, @0, En+1))

:A1+A2+A3+A4+A5.
By Holder inequality, the first two terms can be treated as

1
Ay < S[Em - B+ ofE; (5.3.34)

and
2
A, < —HVE"“ CAt
0

= [VE™ [(5.3.35)
By Lemmas 1.9 and 5.5, we derive
Ag = 20t (™, div Byt) 200 (PR div B

= 2t (", divERT) - 280 (VR Vi)
(5.3.36)

< CReAtHn"“Hi—i—% (HVE"“ z+ va“”i)

+CAL ([ultn) |+ VD) 12) + ||V op 2.

182

The above A;, Ay, and As are the bad terms to get optimal order O(At) +
O(h**t1). By the formula (5.1.12) and Lemmas 5.5-5.6, we obtain
2Nt

Ay = Re (s, divayth)
= <h7 n+1_$2>
At (5.3.37)
= =2 (lsne s = il = s = silo)

At At~ 2
~ e (15 = i) + o[V2=

IN

In the estimation of convection As, we will use frequently Lemmas We split the
remaining term As, the only one dealing with convection, as follows: 1.5 and

1.16.
As = —280N(u(tnsr) — ultn), u(tng), By
—2ALN (u(tn) — uf, u(tng), Ep)
~ A (5.3.38)
2NN (g, G, By — 28N (g, By, By
= =A51+A50+ As3+ As 4.
We note As 4 vanishes by (1.2.61). Since ||u(tp41)|l, < C, the first two terms can

be written by

Ay < OBHu(tr) = ulta) lollaltas)l, vﬁz+10
, [t B (5.3.39)
< o n
< CReit /t ||ut(t)||0dt—|—24R el
and
Asz < COHulta) = uillgllultne)lly vﬂﬁlo
(5.3.40)
A n2 n|2 n+1 2
< ORent B2+ 1G"1R) + 5w | VB[

183

Since we have |HGZ+1|H < M by 5.4, we derive
Ass = —2AtN(uf —u(t,), GIH EY

—2AUN (ulty), G B

IN

COtuy —ulty)llof|GRH| HVEZ“HO (5.3.41)

+CD ()] G5 [VER

0
2

At

< CRest (IB; + 16715 + G5 5) + 5pe

VE

0.

~ 2 2
Since HVEQ+1 0 2| VEC, plugging (5.3.39)-(5.3.41) into

S 2Hvﬁn+1

(5.3.38) deduce

2

Ay < CRent (B + |67 + G 2) + Aot wEr

0
At tnt1 (5342)
+m|\VFn+l|\§+CReAt2/ ()1 2dt.
tn

By Replacing (5.3.34)-(5.3.37) and (5.3.42) on the formula (5.3.33), We derive

n n 1 n n At A’n. 2 7
B2 o = B + 5 [B+ — B flg + o= || VB | + (Va5

JAN
+ 25 (llsm 1l = Dsilz) < el +

CAt

| [VE

(5.3.43)
+CRest (JBI; + 1671 + G5+ + ;)

tn+1
+CAE ([[utus)lls + IV(tari)llo) +CR6N2/ [lue (t) llgdtt-
tn

184

Summing over n from 0 to N,

At
[+ %

N N
Zellsh o+ Z [Ett =B+ > Vet
n=0 n=0
Sl

C’At n
‘EOHO + - Z HVF +1H0

N
+OZ [F)2+ A > (ultas) 12 + V0 (tass) 1)
n=0 n=0

N
+CRentY” (IEI+ 1615+ G5+ + o)

n=0

tN+1
-HH%A#[||, (2)]|dt.
0

We note the assumption h? < CAt need to estimate YN [[F**!||2. Since

|EC|2 < Ch2+2|ju(0)||>,,, by discrete Gronwall lemma, and by Lemmas 5.2

||s+17

and 5.4,

EN+ g N+1 > ErH _ En|? > \vZiaz! 2
Bl + S st o + ZH HO+ZH oo

(5.3.44)

HQE:HVEHW < O(At+ h2).

By (5.3.23) in Lemma 5.5, we have HENJr1 HEN+1H0+HV N“HO So we get

(5.3.28).]
Let (v ¢"™) € H*(Q) x H*(Q2) be the weak solution of the following Stokes

equations:
4

A n+1+vqn+1 En+1 in Q,

§ divv"t =0, in 0, (5.3.45)

vl =, on 0f.

\

185

Let (vit!,¢'*") € V,, x P}, be a discrete solution of

<VVZ+1 ’ VWh> - <qz+1) div Wh> = <En+1 ; wh>) vwh € Vh:
(5.3.46)
(Vry, vitty =0, Vry, € Py
The following error estimate follows from [12] and Lemma 1.17.

Lemma 5.8 (Properties of v**! and vi'*') Let Assumptions 1-6 hold. We have

vt =i o + Al =i < eR? (e, + ()

(5.3.47)
< ow|E|,
[lvet = vt < cfferry, (5.3.48)
and
vy = 0. (5.3.49)

Lemma 5.9 Let v and vi'*! be the solutions of (5.3.45) and (5.3.46), respec-

tively. Then we have

1. < CR[E= g + O Vv, (5.3.50)

PROOF. From Lemma 1.1, we obtain
Bl < cffvvri

< OVt =ity + Ol vt (5.3.51)

IN

CRIE™ |, + Vv, .

186

Lemma 5.10 Let Assumptions 1-6 hold. And let the exact solution (u(tni1),

p(tni1)) of (1.1.1) be in HSTH(Q) x HS(Q), and let h? < CAt. Then we have

2 al 2 At 2 s 2
2+ Z: Bt — B, + EZ <HEn+1H0 n HEn+1 0)
n=0 n=0 (5.3.52)
<C (AtQ + h2s+2) _

]

PROOF. We choose wj, = 2Atv ! in formula (5.3.29), then we have

2 <En+1 E", "+1> 4280 <VE”+1 , vv;;+1>
Re
= 2At(P™, div vty — To (sp, divvpth) (5.3.53)

—2AtN (U(tng1), Wtnsr), vith) + 248N (uf, Gpt vith).

We note (Vs , vit') = 0. The terms of left hand side in (5.3.53) become, by
the weak formulation (5.3.46),
9 <En—|—1 En n—|—1> =9 <En—|—1 - En’ v;11—|—1>
= 2(V(vit' = v), Vvith) (5.3.54)

= [[Vvp 2 = 19vElls + [V vt = v

and
N N’ -~
- S (VE vt = — (VE LB, Vvt
QAt (<an+1 Vv}rlz.—|—1>+ <En—|—1 En—|—1 Vq2+1>>
) A b)) (5.3.55)
= o (VP owp) 4 B

<Fn+1 En—|—1> <Vpn—|—1 Vq’rlL+1>)

187

From (5.3.54) and (5.3.55), formula (5.3.53) can be rewritten by

PYAN

HVVZHHO —|IVv h||0 + ||V ntl)Hﬁ HEn+1H0

_ 2At <VF"+1 Vv n+1> + <Fn+1 En+1>
Q_At (Vortt ity + 28 (PP div vitt) (5.3.56)
—2Nt (J\/(u(tn+1),u(tn+1) VZ+) — N(up, @yt ZH))
=A; + Ay + A3 + Ay + As.

Assumption 1 and Lemma 5.8 help us to estimate the first term in (5.3.56).

A, = QAt <VFn+1 V(v - v - 2RAe (VE™1 | gyt
< ‘Wh + S E e (5.357)
< CR“ (hZHVF”“HoJr [+
The following two terms can be deduced easily by
4 < S E R
< CBlpuen)ty B8 o o
and
Ay < SR a2 S (5.359)

By incompressible constraint in discrete Stokes equations (5.3.46), we get
A4 = 9At <Pn+1 _ P}:H—l div (n+l n+1)>
< CAth|n™H| v, (5.3.60)

< Rt |2+ B

188

Now we carry out the convection As term by estimating separately each split

term.
As = 2NN (utnyr) — u(tn), u(tne), v
—2AN (u(ty) — ul, u(tpg), vith
—2AtN (u}, u(tns1) — ﬁzﬂ, VZ‘H) =A51+ As2 + As 3.
The two Lemmas 1.5 and 1.16 give us the following estimations

Asy < CAtu(tgr) = ultn) ollaltnen) L] 7v3

IN

tnt1
CAtQ/t i ||ut(t)||§dt+0Atvag+1H§,

Asp < CAL(E | + 1G"]lo) laltnsa) o[VR

A
8Re

IN

(g + e —=; + l6;)
+COReAt|| Vi,

and
As3 = 20N (u(ts) —uf,u(tyr) —apt, vith)
2NN (ultn), u(tnsr) — 83, Vit
= ININ (u(tn) —u},u(ty) —aptt, vt — vn+1)

+2AtN (u(ty) — up, u(tny) — U, v

Y

—QAtN (U(tn), u(tn—H) — ﬁZ—H, VZ—H) = A5,4 + A5,5 + A5,6-

189

(5.3.61)

(5.3.62)

(5.3.63)

(5.3.64)

By Lemmas 5.7 and 5.8, the three terms on the right-hand side of (5.3.64) can

be estimated as follows:

Asy < CAt||G"+E"||0HV(G"+1+E”+1)

v = vl
0

< con (ot +1) (fver]+ [vB],) [,

)

< CReNt(At+ h?) (HVG”“Hz + || VB

At

" n+1
T

2
0’

Ass < CAL|G™ + E””OHV(GTH'l + En-l-l)

v,
0

)l

CReAt (At + h%) (HVG”HH(Q) + HVE”HHZ)

IN

ot (e +n0) ([vers |, + |vE

IN

Aty
+ape B o

and
Ase

IA

CAt||u(tn)||2Hu(tn+1) - GZHHOHVZHH1

En—H

IA

CAt (‘

a1
8Re

S+ le o) 9w,

IA

(15 + 195+ ;)
+CReA|VvE2.

Upon Plugging (5.3.62)-(5.3.67) into (5.3.61), we obtain
At

As < —
2Re

(1Bl 4+ Bt =B+ e o+ e;)

)

+CReAH AL + h2) <||VG"+1|\§ +||[vE

At n n
+ 2 2+ CRenst][vy

tn41
+C At /t || uy (2) |2 dt.

190

(5.3.65)

(5.3.66)

(5.3.67)

(5.3.68)

Gathering (5.3.56)-(5.3.60) and (5.3.68), we obtain
n+1]|2 n|2 n+1 ny |2 At n+1(|2
IV Hly = Ivvhllo + [V (i =vidllo + 2 B

tn
< CRe||VvEHY |2+ CReAth? |+ |2 + C A2 / g2t
tn

CAt
e (PIVE o+ B o + [— B 7) (5.3.69)
CAt () . i
+ot (e + s + [vap2)

+CReAY(AL + h¥) (||VG”+1|\§ + || e

2
0) '
On adding over n from 0 to N,

N i . At
Vo e+ D Vet = vl + 2 2 B
n=0 n=0

N N
< CReAtY ||Vt o + CReAth? Y |||,

n=0 n=0
CAt &
- (P2 FE)+ B2 5 + B — B) (5.3.70)
n=0
CAt TR tN1
+ 2 (I1G"l5 + [V RIIG) + cm?/t [y (2) |2t
n=0 0

N
2s n+1||2 nn+1 2
+CReAt(At + h*) ZO: <||VG I, + HVE 0) .

Since Lemma 5.7 support

2

N N
S (Ve 2+ et~ m)2) + ary | vB|
n=0

n=0

(5.3.71)
< C(At+h*),

191

the formula (5.3.70) can be simplified by Lemmas 5.2 and 5.4,

n=0

N At N
IVl + DIVt =vils + 3, 2o lE g
n=0

N
< C (A2 + 122 4 Ath®) + CAtY | vvit o

n=0

By discrete Gronwall lemma and Lemma 5.9, we derive

N
2 At n+1||2
e 2 [

<C (At2 + h25+2) .

N
;* + Z HEn+1 . En}

n=0

Y

From Lemmas 5.5 and 5.7, we drive

N
At Z HEVH—I
n=0

9 N
L= A (B + Ve)

n=0

S C (At2 + h2$—|—2) .

So we proved (5.3.52).

5.4 Error Estimate for Pressure

(5.3.72)

(5.3.73)

(5.3.74)

The goal of this section is to estimate the pressure error in L?*(L?) for Algorithm

5.2. The main difficulty is to derive the following improved error estimate:

N
STEM - Er|D < C(A8 + B,

n=0

(5.4.1)

Since we just proved a suboptimal order O(y/At + h®) in Theorem 5.7, showing

(5.4.1) requires more regularity of the exact solution of (5.4.2).

Lemma 5.11 Let Assumptions 1-8 hold and

T
/ ||uu||§dt < M.
0

192

(5.4.2)

Then we have

1 1Y B
§HGN+1_GNH§ + §;|‘Gn+l_2Gn+Gn 1”3

N (5.4.3)
v lvier - el < mae
Jnax lg"lls < CAt, (5.4.4)
and
N
Atz Hg”Jrl — g"Hé < ONE, (5.4.5)
n=0

PROOF. Subtracting n time step from n + 1 time step for (5.3.8) yields

<Gn+1 —2Gn + Gn—l

]' n n
A ,w>+§<V(G+1—G),VW>

(5.4.6)
—(¢" —g", divw) = (Rpy1 — Ry, w).

If we choose w = 2At(G"™ — G™) € H(Q), then (¢"™! — ¢, div G"™' — G")
vanishes because div G"t! = (. Then we have

2

le"t -, - 6" - 6"y + o — 26" + &

(5.4.7)
JFQR—AJHV(GM1 —G")|s = 24t (Ryt1 — Ry, G™F1 = G™).

Since the right hand side of (5.4.7) becomes
<Rn+1 ’ Gn+1 . G_TL> . <Rn7 G_n—|—1 . Gn>
= (Rpy1, G =G™) —(R,, G" - G") (5.4.8)

—(R,, G"' —2G" + G" 1),

193

summation over n from 1 to N yield

2

N
HGN+1 . GNH§ + Z HGn+1 _2G" + Gn_lHo

n=1

2NE . .
+§;HV(G e

= 2At (Ryj1, GV = GY) — 24t (R, G' — G°)

N
—2AtY (R, G"' - 2G" + G") + |G - &°||;

n=1

:A1+A2+A3+A4.
We now estimate splinted terms in (5.4.9) separated as follows:

tN 1 1 9
A<t [fuaolide+ 56N - 6,
ty

A <OAB [lug())2dt + |G - G°|I%,

to

and

t N
ayoni [" i s S e - aer e
fo n=1

Upon plugging (5.4.10)-(5.4.12) into (5.4.9) we derive

201
Re —

N

Ligvi _aviZ<one [jugl2dt + 2] G' — GO
+§|| -GN < . [unllodt +2[|G! — G|

N
S IviE —an2+ 5 S0 len - a6n + G
= n=1

(5.4.9)

(5.4.10)

(5.4.11)

(5.4.12)

(5.4.13)

In order to prove ||G! — G?||2 < C A, which is the sufficient condition to get

(5.4.3), we choose n = 0 and w = 2AtG' in (5.3.8). Then we get

At
I&6Hl; — l6ll; + et = &°llg + 2 IV G,

t1
< CAt3/ s ()5t + | G|
to

194

(5.4.14)

Since ||GY)|Z = 0, we derive |G! — G°||> < CA#3. Therefore we get (5.4.3). Also
we get (5.4.4) by considering (5.3.11) and (5.4.2)-(5.4.3). Now we prove (5.4.5)

by using (5.4.3) and (5.4.6). The continuous inf-sup condition give us w € H(Q2)

such that
lg™tt —g"lls = (g™ —g", divw)
|Gt - 2G" + G" Y|,
= ¢ (At 1R = Rl (5.4.15)
1 n n
#pelvi@ - @),) i,
and
. N C ||Gn+1 —2G™ + anln C
lg"* = g"[l, < 3 At °+ E”R"H — Ryl
c (5.4.16)
n+1 n
+—BR€|\V(G -G,
Since
2 bt 2
Rass = Rall%y < A6 [)|, (5.4.17)
tn—1
squaring the estimate for ||g" ™' — ¢"||, and multiplying At yields
2
nit a2 o CIIG™ —2G" + G"Y|
Atllg™ — gy < 55 AL :
5.4.18)
CAt n w2 C tnt1 (
V@ e o+ o [ol

On adding over n from 1 to N, the formulas (5.4.3) and (5.4.18) lead to (5.4.5).

Lemma 5.12 Let Assumptions 1-6 hold, and let the exact solution of (1.1.1)

satisfy

lemma : error : discret : exact : bound : assump(u(tny1),p(tns1)) € HTH(Q)x H(Q).

(5.4.19)

195

If we have

then

and

IV, (0[], < M,

N N
DO [E = Er g+ ALY [V (F - F);

n=0 n=0

< C(AE + At?h? + Ath?)

sup ||n"|]° < C(At+ h%).

0<n<N

PRrROOF. We note Lemma 1.6 which is

/ T (@2 + w2 + @) de <

to

under assumption (5.4.20). Also we note

[—Fr g <26 - 6+ 2GR - G

and we prove in Lemma 5.11,

N
o~ + £ v(e - e < car
n=1

By (5.3.15),

lGi™ - G;

On adding over

N
> e
n=0

o < O (llaltuss) = ulta)ll; + Ip(tasa) = p(t)I7)
< oant [()l + 1) d

n from 0 to NV,

tN+1
nll2
~Gil < oot [T (Ol + In (oI de

to

196

(5.4.20)

(5.4.21)

(5.4.22)

(5.4.23)

(5.4.24)

(5.4.25)

(5.4.26)

(5.4.27)

And

VAN

V(G = GPe < C([ultuss) = ult)lls + [p(tas1) — p(t)]3)

o 2 2 (5.4.28)
< CA? / (@)1 + [Ipe(®)|) d.

So

- n+1 ny |[2 a2 [N 2 2
ALY IVIGHT =GR, < CAth (@l + @) dt (5 4 59

n=0
We prove (5.4.21). (5.4.4) and (5.3.17) derive

I < 2(lg"l” + llgrll®) < C(AE+ h*). (5.4.30)
Therefore we finish to prove Lemma 5.12. |

Lemma 5.13 Let Assumptions 1-6 hold, and let C1h? < At < Cgh% be valid

with arbitrary constant Cy, Cy > 0. Then we have
N - 2
2O i T (5.431)
n=0

PrROOF. From Theorems 5.7 and 5.10, we have

N . 2
n+1 2s
At; HVE (S C(At+h) (5.4.32)
and
N o 2
n+1 2 2s5+2
Atnz:% HE <O(AP). (5.4.33)

197

We note H‘E”“m = HE”“H + HVE”“H . Using inverse inequality

L3(Q)
2
L?’(Q))

N R 9
cnty” (hdHE"“)
0
n=0

< Ch (AL + B>*2) + Ch™5 (At + h>m)

Lee(Q)
Lemma 1.12 and formula (5.4.21), we get

N N
ALY ‘HE"H < onty (HEW
n=0 n=0

*()

2
L

VE"+!

IN

2
+ RS
0

(5.4.34)

< Ch AR + CRZ+24 L Op2—5 £ Ch~ 5 At

IN

M.]

112
We note that Lemma 5.13 does not imply max H‘E” < M. Since this inequal-

0<n<N

ity does not hold, we need to intermediate step to treat convection term in the

proof of Lemma 5.15 below.

Lemma 5.14 Let Assumptions 1-7 hold, and let h?> < C At with arbitrary C > 0.

If
[V (0)[l, < M, (5.4.35)

then we have

2, Aty gz 1oy e 12 f%EH B
0o + Tl il + 3" =Bl + 1¥eill + 55 |VB,
< C (A2 + h*12)
and
VLo < OAt (AF + h*+2) (5.4.37)

198

PROOF. By choosing n = 0 in (5.3.43), we have

1 2 At
s+ SIE =B+ | Vakllo + 5z | VB, + Fellshll

2Re‘

CAt
< [[B*fs + —H stlly + CIF g+ 5, Vg

O 1) 1 (5.4.38)
+CRet (|[Elg + 1Ghllo + Gl + [1n')
t1
+OAL ([l + Vo) I2) + CReAE [[[uy(t)]2dt.
to

Since s) = 0, and by Lemmas 5.2-5.4 and 5.12, we get (5.4.36). And by choosing

n =0 in (5.3.69), we have
t1
VA2 < CReatr?|q!|f + cm?/ e () 2t

CAt

e (WIVE S+ |+ 2~)

C Ap ((5.4.39)

l&ls+ el + [veill;)

)

By Lemmas 5.2-5.4 and 5.12, (5.4.36), and || Vv |2 < [|E[|2, we get (5.4.37). m

+CRet|| Vi) +

+CReAH(At + h2) (HVGlﬂo +||[vE!

Lemma 5.15 Let Assumptions 1-7 hold, and (u(tn41), p(tny1)) € HTH(Q) x

H(Q). If C1h?* < At < CQh% with arbitrary C1, Co > 0 and if
|Vu(0)]|, < M, (5.4.40)

then we have

N
HEN+1 . EN”§ + Z HEn+1 _ 2R + En_lHi

n=1

+ZHV h -)Ho+—H A (5.4.41)

< C (A8 +B7T?).

8Re Z HV (En+1 En) z

199

PROOF. By subtracting n-step formula from (n + 1)-step formula of (5.3.29), we

have

En-}—l — En En _ En—l 1 N =
< _ , wh> +— <V(E"+1 _En, th>

At At Re
= (P" — P" divwy) — x (sp—sp™", divwy)
Re (5.4.42)
—N (u(tns1), utnis), wa) + N (uh, 857, wh)
+N(u(ty), ulty), ws) — N(up=', a7, wy).
We choose w), = 2At(Z/E\)Z+1 — Z/E\)Z) in (5.4.42). The left hand side of (5.4.42)
becomes, by Lemma 5.5,
2 (B -EY) - (B - E"), By - Bp)
=[BT - By - [|B - BT + | BT - 2B + B (5.4.43)

+2HV(IOZ+1 _ pg)Hi 9 <En+1 _9E" + Er-! ’ Frtl _ Fn>

and
2 (@ B, V(B - Bp)
_ QR—A;HV(E”“ — B z (5.4.44)
_QR_A; (VB -E), VE - FY).

200

By (5.4.43) and (5.4.44), (5.4.42) becomes

o A L e oA ol

+2|| V(! - Ho—i-Q—AtHV B B z
= QR—A; (VB B, VE - F))

+2 <En+1 _ 2En + Enfl ’ Fn+1 _ Fn>

YN <P”+1 — P, div (Eptt - Eg)>

2\t
Re

—2/\t <N(U(tn+1) u(tn41), En+1 EZ)

(5.4.45)
(sh—sp !, div Byt - Bp))

_ N(llh, un+1 En+1 EZ))
YN (./\/'(u(tn), u(ty), EM — By — N & B — Eg))
:A1+A2+A3+A4+A5+A6.

We estimate the split terms in (5.4.45) separately. A;-As can be derived easily

as follows:
2 CAt 2
n+1 n n
A < 16R6Hv B+)|)2, (5.4.46)
1 n n n—1]|2 n n||?
Ay < G|[B" 2B + B[+ O[T - F (5.4.47)
and
Ag = 20 ((pltas1) = pltn)) — (9™ = ¢") , div (B — Bp))
o [2 n+l _ nl|2
< CReAt lpe() I3t + CReAt||g™ — g7 (5.4.48)
tn

n+1 En)

16R HV 0

201

By Lemma 5.6 and formula (5.1.12) in Algorithm 5.2, we deduce

2N\t ~
Ay = E (sp—sp~", div(upt' —ap))
= < sh=sp (ST —sp) = (sh —sp7)
At nt+l 2 1
= " Re (HS T =sillo—llsh = a7)
5.4.49)
At (
+ Hs"“ —232—1—32_1”3
< = (s = shlls = llsi = 527115
At ~ ~ |2
|\ v/ En+1 —E"
+Re H () 0
The convection can be separated by several terms,
As = 20N utan) = utn), ultar), By — B}
—2AN (u(tn) — uf, ultar), By - B
(5.4.50)
—2AUN (uf, utny) — G B - Bp)
= Asi+As2+ As3
and
Ag = 2AtN (u(ty) — ulte_y), u(t,), Bt — EP)
2NN (a(ty—1) — uP~Y u(t,), B+t — Ep)
(5.4.51)
F2AEN (U u(ty,) — G, Ept — Ep)
= As1+ As2+ Ags.
We now estimate the first two terms in (5.4.50) and (5.4.51) as follows,
Asy < OAHu(tn) = ulta)lolutta)ll |V (B5 — B2)||
> (5.4.52)

tp41
2 2 n+1 n
< CReAt /tn ||ut(t)||0dt+64R HV (E E) K

202

Asy < CAtu(tn) — ufflolultasn)]l, v<Ez“—Ez>

0

< CReAt (|[E™|2 +[1G"]12) + oy o)

64Re HV 0o

Ag1 < CAtu(ty) —ulty 1)lllluta)l, |V (EF - ER)

0
2

tn
< CReAP)|[2dt —Hv (B! — By
< creat [ol + gy Al

gy < cmuu(tn_l)—u’;:—lHonu(tn)nszEz“—Em 0

< CRent (B2 + |G [2) + v(E -)|

64Re)

Each last term in (5.4.50) and (5.4.51) can be written by
Asp+ Asy = —20tN (uf, Eptt Ertl — Ep)
—2AEN (uf, G EM — ED)
+2ALN (=t B Bt - Ep)
F2AIN (wpt, G B - ED)
= B;+ By + B; + B,.
The Lemma 5.4 help us to derive the following two terms

B, = 2AN ((u(tn) —u?) - u(t,), Gr B - Eg)

IN

Ctuta) = il || &5 |||V (B5 - Bp)

0

+C Bt u(ta)] G5 |V Bi - Bp)

0

IN

CRet (B + ||G"||§ +le)

En+1 En)

64R HV 0

203

0

(5.4.53)

(5.4.54)

(5.4.55)

(5.4.56)

(5.4.57)

and

B, = 2AtN ((ug—1 —u(ty1)) + u(t,_), Gy EP! — E;;)

< CAtllup? (ER - B
+C At u(t-))| Gl [V (B3 - B (5.4.59)
< CReAt(HE" 1H0+||G" o+ 1GaIR)
V(EM! — Ef
64R H) 0
Invoking the crucial properties of N of (1.2.61), we infer that
_ n @|n+l @|n n—-1 T™n pntl
Bi+ By = oAt (N(up, Bt By + N (up ! By B)
= 2NN (uf —up L ERER)
= 2AIN(E" —E" L E —E!ED)
~ o (5.4.59)
—2AtN(G" — G™ L Elt — E}LEY)
F2AEN (u(t,) — u(t,_,), Ertt — Ep, Ep)
The term B can be written by
Bl = 2N (E" — E" L Ertt — EF EY), (5.4.60)

and we postpone the estimate of Bf' until the end of proof. In order to estimate

Bs in end of this proof, The inequality Hﬁﬁ

< C and Lemma 5.7 derive the
1

following two terms

Bs < CAt|G" - —E;;

1

, (5.4.61)

< CReAt]|V(G™ — G" Y)||7 + (Ep+ —Ep)

sare |

1

204

and

B: < CAt|u(t,) —u(t,_1)|, E;;H-E;; E"

1
) (5.4.62)

tnt1
< CReAP ' —‘ (Br+t — &r
< orent [(0l + g |)

0
Gathering (5.4.50)-(5.4.62), A5 + Ag can be bounded by
A5+ Ag < CRedt (|[B[+ [E*fS + B — 5 + G
+am g+ HG"“H0 +IGHlls + [|V(G G"‘1>II§)
(5.4.63)

=" En—‘rl En
+4Re (HV

tnt1
+orent [(ol + lu(OIR) dt + B2,

tp—1
since
|vE -8y

2 ~ ~ 2
<o - B <2 E - sasy

Upon plugging (5.4.46)-(5.4.49) and (5.4.63) into (5.4.45), we get

n n n n— At n n n—
s B — (B B o (s = shlly — sk — s 7'(15)

2

g B = 2B B |V (o - (B - Br)

Ao+ 5pl¥ 0
< CRet (B[+ B[+ [B[+ G5+ s + Il
HIG" |+ G s + 196" = G Y| + [l = g17)
LCReAP / (eI + a1 + e (2)]12)

NG T el s 7

205

Summing over n from 0 to N, and noting s} = 0, implies

At
2l =il

N
[+ - BN+ 5 3 B - 2B+ B+
n=1

SR A+ S OB -
0 2Ren:1 0

< ZBs + B =B+ 7 llsillg + ¢ D F et = F

n=1 n=1

N (5.4.65)
+CRett Y (B[+ B = B+ o™ =] + IG5
n=0
CAt
Hle; + V(e —) + Z v —Em);
Rhs 2 2 2
sorent [(ol + [+ Il a
0
By Lemmas 5.2-5.4, 5.7 5.10-5.12, and 5.14, we deduce
||EN+1 _ ENH2 + liv: HEn+1 —9E" + En71”2 At HSN+1 N”2
079 0 0
+Z IV (o+ =)o + Z |v@E - B (5.4.66)
N
< C(AP + 1) +) B
n=1
We now estimate the remainder Bf. Since)EZ . < C, by Lemmas 1.12 and

1.16, we have

B < COYE =B) B

En+1 — E»
h h 1

1

< oot E|[E B |V (ER - B)

. (5.4.67)

< CReAth 3|E"— B! + %HV(EQH —Ep)

0

206

N
The result, » ||E" — E"'||} < C(At + h*), in Lemma 5.7 implies

n=1

N
Sour< S e 8

+CRe(At2h T4 Ath?TE), (5.4.68)

So (5.4.66) can be bounded by
2 1 al 2 At 2
B -+ 5 Z [— 2B + B+ HSN+1 sa o
(5.4.69)

+ZHV |12+ ZHV(E"“ E")

< C(APPh™5 + Ath*75),

Since it is not yet correct order, we estimate Bf again, but this time employing

(5.4.69). We now use the improved estimates

[EN+H —EN||7 < C(APR™S + Ath?75). (5.4.70)
We see that
By < CAYE" B0 Bt - B | B2
< comt|E B B - B |Br|
< CAth™5(At+ At2h?)|Br! — Bp 1 1 (5.4.71)
< CReA(Ath™3 + B2
ot oier -]
Since At < Czh% we obtain
ZB" < CReAt2Z HVE" + 4—R€ Z | v -) (5.4.72)
Lemma 5.10, in conjunction with (5.4.66) and (5.4.72) implies (5.4.41).]

207

Lemma 5.16 Let Assumptions 1-7 hold. Let (u(tni1), p(tny1)) € HTH(Q) x
H*(Q). If there exist two positive constants C1 and Cy such that C1h? < At <

Cgh% for arbitrary Cy, Cy > 0, and if
[V (0)[l, < M, (5.4.73)
then we have

B B

2
VA

N
7t %Z B+ — 9" 4 B
At - - (5.4.74)
" Re ; B+ — B2 < CAL (AR + h2+?).

PROOF. By choose w), = 2At (vi — v7) in (5.4.42), where v}/*" is the solution

of the discrete weak Stokes system (5.3.46). Then we have

2 <(En+1 _ En) _ (En _ En—l) , VZ+1 _ VZ>

2Nt
.l

= (VE —E"), V (v - i)

= 2A¢ (P — P div (vt = Vi)
(5.4.75)
—2A¢ (N (u(tng1), ultns1), vitt — vi)
= N(up, a3, vt = v)

+2At (N (u(tn), u(ty), vit' —vi) = N(up = ap, vith = vi)).

Here, we note again <rh, div VZ—H — v2> = 0 for all r,, € P,. The left-hand side

of (5.4.75) become
9 <(En+1 _ En) _ (En _ En—l) , VZ—H _ V2>
=Vt =ville = [Ver = vi e (5.4.76)

|V (vt = 2vi 4 v b

208

because of (5.3.46), and

2 (V@ B, Vgt)
_ 2R—At (VEN —Bp) + VE™ - F"), V(vit = vi)
- (e e BB - (V) B -)
2At <V (F”“ F”) v (VZH _ VZ)> (5.4.77)
2At”En+1 = 2RA6 (E"*'—E", F""' —F")
_QR—A; <v (g™ —qp), B — Eﬁ>
2At

2LV (), Y (v -)

because of (5.3.25) and the weak formula (5.3.46). So (5.4.75) can be rewritten

as follows:
n 20 .,
IV =villy = VR = vi Dl + 5, B B
+HV n+l _ 27 +VZ_1)H§ QRA; <En+1 E", Frtl _ Fn>
VAN ~
e <V(Q"+1 —qp), Eptt - EZ>

QA
(VT FT), VT -)
2A Pn—l—l o Pn n+1 n
+2A¢(, div (vt —vp)) (5.4.78)
2L (N (lts), ultg), Vi —)
—N(u(ts), u(t,), v — vp)

=N (uy, @57, vt = V)
+ N(up=hap, vt — i) .

:A1+A2+A3+A4+A5.

209

The first term in (5.4.78) is simply deduced by

Aty . CAt
Ay < | B - B,

ly + o I1F* = Bl

We note Assumption 1 which in this context reads

el + lla™ly < Ol -

By Lemma 5.5, we have

2At

Ay = = (V@G = d) Ve - o)
< e —E s+ SV -)
and
A = Mt(v F'H —F"), V(v — ™)
F22LGE -), VT V) - Y -)
< COL (e B+)V (- E)) [
< e B S
+E8I g (e~)
Since div v**! = 0, we obtain

Ay = 28¢(P™ — P div (vit! — i) — div (v = V™))
< OAth| P = P f[v™ = v,
tn41
< CReAt*R? / ' lpe(t)[|2dt + CReAtR? || g™+ — g7
tn
g
+4Re||E E

o

210

(5.4.79)

(5.4.80)

(5.4.81)

(5.4.82)

(5.4.83)

The convection As can be split as follows
As = =2AtN(u(tng1) — u(ts), u(tes), VZH —v3)

—2AtN (u(ty), u(tns1) — ults), VZ_H — V)

(5.4.84)
F2AN (uff — up At vt —)
F2AN (upt @t — A, vt — v
whence
As = —2AN ((tni) — 2u(ty) + u(ty 1), ulty), viTh —vP)
—2AtN((u(ts) — ute-1)) — (uy —up™"), u(tupr), vi ' = Vi)
—2AtN (uf — a7t u(tg) — ap vt — v
—2AtN (u(ty) — ultn-1), u(tnr1) — u(ts), vith = vi) (5.4.85)
—2AtN (u(ty 1) — up " ute) — u(ty), vitt —vi)
—2AtN (up ™, (u(tn 1) — u(ty)) — (Upt —Gp), vt — v)
= B+ Bo+ By + By + Bs + Bs.
Since ||u(tp11)|l, < C, we get
By < CAHu(tass) — 2ultn) + ultnv)llollutass)lls]| vi = v,
bt (5.4.86)
< ontt / lun@ll3dt + CAH|V (vt = vi)[:
and
By, = —2AIN ((G" = G™) + (E" —E" V), u(tys), vit! — vi)
< soe (e - e+ e - m) (5.4.87)

+OReAt||V (viH! — v |,

211

Bs can be divided by

B; = 2AtN((u(ty) —u(tp_1)) — (up —

—2AtN (u(ts) — u(tp—1), utns

= 2AtN ((u(ty) — u(tn_y)) — (uf —ul™),

—2A¢N (u(t,) — u(t, 1),

u(tpi1) — u,

~n+1

)

—2AtN (u(t,) — u(tn—1),u(tns1)

= Bj;+ B3y + B33+ B3y

212

n+l
Vh

=n+1

_uh ,

Since we have ||(G" — G"™') + (E" — E”_l)”0 < C(At+ h*™) by Lemmas 5.2

and 5.15, we get

and

Since |[u(tn41) — U3t < C (HVG"HHO + HVE"“

B,

Bs

<

IN

IN

IN

IN

IN

IN

CAh[[(G" = G™1) + (E" —=E")|,

hata) = @, v = v,

CAth'=5[|(G" — G™ 1) + (E" —E")|,

[u(tn) — 83| [[B" - B, (5.4.89)
CAth: (At + B |u(tes) — T, |E - B,
CRe(Ah+ Ath**+) (HVE"“HZ + ||VG"+1H§>

At n+l _ n 2
+oome BT B,

CAL|(G" = G 1) + (E" - E’H)H0

—~n+1 n+1 n
Jutten) = v = v

CAH(AL + 1) |[u(tng) — T, |B™ — B, (5.4.90)
CRe(A + Ath?+2) (HVE"“ z + HVGWHE)

At n+l _ |n 2
toora B —E

) < C by Lemmas 5.2
0

and 5.7, we obtain

B;z <

<

CAth|lu(tn) — u(tn-1)l; [[u(tasr) — G| v = v"|,

CAth||u(ty) — ute)|, |E"" — B, (5.4.91)

tn At 2
212 2 n+1 n
CAt*h /tn_l | Vu, () ||odt + —20R€HE —E Ho

213

Lemmas 5.2 and 5.7 implies ||u(tp11) — ﬁ}:“”o < C(At? + h*) and

Byi < CAtu(ty) = uta)l futns) — 55 v+ = v

)

< CAHAL +) ||ulty) — u(tn—1)||1HEn+1 - E"|, (5.4.92)

-

tn
< (AP + AR / V(1) 2t + —2L I°

th—1

20Re

tnt1 %
Since ||u(t,) —u(t,—1)||, < C (At/ ||ut(t)||fdt> < CAt2, we deduce
tn

B, < CAt|u(tn) — u(ta-1)ll [[u(tasr) — ulta)lly[[vi™ = vil,
tnt1 (5.4.93)
< CM/t IV (0) 2t + CAL| V(v — v
We divide Bj term as the following
Bs = 2AtN(u(t, 1) —uf ' u(ty) — u(ty,),
(v =) = (it =)
(5.4.94)

2NN (u(tpr) — b u(tyy) — ult,), vt —v7)

= Bsi+ Bsps.

Since |[u(t, 1) —u}~ < Ch_%(At% + h*), we obtain two followings

1
v s

B5,1 < CAthHu(tn—l) - UZ_IHLs(Q)”u(th) - u(tn)Hl

b = v

st 2 (5.4.95)
< CAR(Ath+) / Vus(t)|2dt

tn

20R ”En+1 ”0’

214

and

Bsz < OBH|ulta-r) = wy " glultars) = ulta)ll, v =7,
< COHAE + 1)|[ults) - u(tn>||1HE"“ —E, (5.4.96)
< CAP(At+) /t”“ IV, (1) |2t + || Bt — B
. 2OR 0
We now estimate the last term in (5.4.85)
Bs = —2AtN(wp™, (utss) — ultn)) — (@3 — @), vi ™' = vp)
= 20N (ultn-1) —up ™, (u(tasr) — ults)) — (@ - T3),
(Vith = vi) = (v = ™)
F2AIN (u(ty 1) — P (U(tnga) — ulty)) — @ —), (5.4.97)
vy
—2AtN (u(ta-1), (U(tas) — u(tn)) — @ = 83), vi™ = v})
= Bs1 + Bga + Bs 3.
Then each split term is proved by
Bg, < CAthHu(tnfl) - u;zlem(Q)H"'n+1 - VnH2
| @B+ (@ - ||
< C(Atzhe + Atheta)||(B " — B 4+ (G — Gn) 1
(5.4.98)

HERH - En”o

< OAH(Ath + b2+ (HV(E"+1 _En)

At

+307e!

n+l
E lo»

215

2 n+1 ny |2
Ve - enl;)

Boa < Cotfulte) i v+ =],

H(E"+1 ~EM 4 (G™L -G

1

< oniart + e - B,

~ ~ (5.4.99)
H(Em—l . En) + (Gn+1 _ Gn) 1
< CAH(AL+ h) (HV(E"“ —E") z + [V(G"*! — G")H§>
At ntl _ n|2
+5076 IE E"|[,,
and
Bsz < CAt||u(tn—1)||2HVZ+l - VZHI
H(Em—l _ En) + (Gn+1 el .
) (5.4.100)
< CAt| Vvt =i,
At Sn+l Jn 2 n+l _ ~n 2)
+oome (B B+ e ey
Gathering (5.4.84)-(5.4.100) implies
A< CAVEET)P+ AL Eme - 2
5 = h R0 " 9Re 0
At n n n n n
+307 (HE 9B B+ || Vet - Vﬂn|\§)
At 0 n N e
oo (- e+ o - @)
+CRe(AE + Ath***?) (HVE”“HE + HVG”“Hi) (54100
tn
(a8 + 881) [(lua(o)l + Vw0 de
tp—1

+O (A + Ath®) (HV(EHH _)

2 n+1 ny |12
0+HV(G -G)”0)

216

By (5.4.78)-(5.4.83) and (5.4.101), we derive

) AT
(VR =villo = VO3 = vi g + g B = B

IR = v+ v < oo B - 2B 4 B
T (i S e e e

+ler - e o+ [VE - F);)

+OAH|V(vptt = i) [|o + CReAth? || g™+ — g (5.4.102)

+O(DP + Ath?) (HV(E”“ -8+ v - G")H§>

+CRe(Af + Ath?+2) <HVE"+1 z + HVG"HHi)

tn+1
+C(AF + At2h2)/ (e ()15 + IV ()]s + lpe(B)l5) dt.
tn—l

217

Adding over n from 1 to /N, we obtain

N
HV(V,JLV_H — v,llv)Hz + Z HV(VZ+1 —2vp + VZ_I)HE
n=1

At &) N)
tope 2B =B [g < CAtY Vvt = vi)|g
n=1 n=1

1 0y[]2 CAt = n+1 n||2 n+1 7y |2
Ve =¥lo+ 5o D0 (I = F o+ [V = as

n=1
Gn+1 —QGn 2 G" — G_nfl 2 h2 v Fn—|—1 —_ Fn 2
+ | Iy + | lo +2*[I(M,

A (5.4.103)

N
+OReAR® Y [lg™ = 7|2+ 5

n=1

N
Z|‘En+1_2En+En—1”§
n=1

3 25+2 Y Hn+1 2 n+1(|2
+CRe(AF + Ath);(HVE | +lve ||0>
3 21.2 tN+1 2 2 2
LO(A + AER) / (laa @12 + [V B2 + e @)I) dt
to

N
+CO (AP + Ath*) (HV(E"“ —E"
n=1

2 " 9
v ey,

By Lemmas 5.9, 5.10, 5.14, 5.12, and 5.15, and by discrete Gronwall lemma, we
prove (5.16). u

We now finally derive the error of pressure by exploiting all previous results.

Lemma 5.17 Let Assumptions 1-7 hold, and let (W(tpy1), p(tns1)) € HSTH(Q) X

Hé(Q). If C1h? < At < Cﬂz% for arbitrary Cy , Cy > 0, and if
[V (0)[ly < M, (5.4.104)
then we have

N
Aty lently < O (At +). (5.4.105)

n=0

218

PROOF. By the definition of pressure (5.1.14) in Gauge-Uzawa Algorithm, (5.3.29)

can be rewritten as

En+1_{En 1 ~
<T wh> — <en+1 , div wh> -+ E <VEn+1 , th>
= 2o (s = sk, divw) (5.4.106)

N (u(tps1), ultni1), wn) + N (uf, Gt wy) .
By inf-sup Assumption 4, there exists an element zhjL € V}, such that
(divap™, ety =ity and [z, < —Heh“l\o (5.4.107)

the formulas (5.4.106) and (5.4.107) imply
leitlly = (divap™, ept)

= (divzy™, "t 4"t

Ertl _ Er 1 /-
n+1 n+1 n+1
<7At 2 > = (VE™!, vagt)

<Sn+1 o SZ; div Zn+1> + <d1V ZTL—|—1 ’ T’n+1>

(5.4.108)
" Re

+ W (ultni), ultns), 237 = N(up, a3, 21)

= A1+ A+ A3+ A+ As.

By Holder inequality, we derive

1 n
S IIEM = EHHOHZhHHo

Al S AJH

IN

B =Bl]l (5.4.109)
ﬁAt

IN

B H v
BNt

219

and
C

4 < v nwlno
) ﬁz(];eQ VE"+1 ” s (5.4.110)
By Lemma 5.6, we have
45 < g’usnﬂ—shn Hdwzh“Ho
) /ﬂ%EZ VE"+1 ” . (5.4.111)
and
As < C|Va | [l
< —He ol (5.4.112)
< sl + Sl
The last term in (5.4.108) can be split by
A = ~N(ultnsr) = ultn), ultns), 25 +)
~N(ultn) — u, ultasr), 2
~N(uf; = u(tn), u(tns1) — 85", 2™ (5.4.113)
N (ultn), ultasn) — G54, 25
= Asi+Aso+ A5+ A5
By Lemma 1.16 and |[u(tu.1)]l, < C, we get
Asp < Cllultnsr) — ult) llglultas)]|z,
CA (5.4.114)

tnt1 9 il
< 5 / o 1) 3+ =l 1
tn

220

and
Aso < Cllu(tn) — uplpllu(tari)ll, thﬂHl

C n n
< 3 (Il + 1G™Ig) + H o
Since [[u(ts) — uhllps) < Ch’%(At% + h) < C3, we deduce

A < ulta) = Wl o) =857 [l

g (Bl hemll) + e

By ||u(tn41)|l, £ C, we obtain

En+1

IN

A5y < O”u(tn)nzHu(th)—ﬁZ“H |22+,

7

Upon gathering (5.4.114)-(5.4.117), (5.4.113) becomes

IN

B ;) + gl

A< gl e 5 (B i+ e+ e
CAt [+
+ o [Tl
tn

Plugging (5.4.109)-(5.4.112) and (5.4.118) into (5.4.108) implies

C

o+ o[7B

H n+l

el
0 = B2AR

520

tnt1
+@Hnn+1”§ + cm/t ().

n

0

En+1

221

I+ e+ ||G"||§)

(5.4.115)

(5.4.116)

(5.4.117)

(5.4.118)

(5.4.119)

By multiply 2At and summation for n from 0 to N,

al 2 C & 2
At; lei™ o < o ; [E —E |,

N+1

CAt ~oe1l2 . . Ln2
3 ([i+)
n=0
CAt & ~ 2 ONA2 [ive
VE"! / £)||2dt.
+ﬂ2R62 ;H 0+ B2) ()l
Finally, we get (5.4.105) by Lemmas 5.4, 5.7, and 5.16. -

5.5 Numerical Experiments

In this section we present a number of numerical experiments with the Gauge-
Uzawa method and comparison with the Chorin-Uzawa method. The results

show a superior performance of Gauge-Uzawa

5.5.1 Example : Smooth Solution on Distorted Mesh (a)

in Figure 1.2

In all mesh analysis Figures 5.5, 5.1, 5.7, 5.3, the solid and dashed lines are
errors of Gauge-Uzawa method and Chorin-Uzawa method, respectively. And
The combinations 3.1-3.4 are explained in page 20. In Figure 5.1 which is At = h?
and linear approximations of velocity and pressure, we can see the pressure errors
of both methods do not converge to 0. So we conclude that the Gauge-Uzawa and
Chorin-Uzawa methods depend on inf-sup condition. In the combination At = h,
Figures 5.7 and 5.3, we can see the errors of Gauge-Uzawa method are little bit
smaller than those of Chorin-Uzawa. These differences due to the inconsistency

(2.2.6) of the Chorin-Uzawa.

222

Velocity in L2 . Velocity in L

107 10
- 2.14 - 1.95
-O0- 2.14 -0~ 1.95
-3 -3
§ 10 § 10
] m
S S
g g .
10 - 10
107 107
10> 10° 10* 10° 10° 10° 10* 10°
Log of DOF Log of DOF
. Pressure in L2 0 Pressure in L*
10 10
-©- 0.00 -©- -0.06
-O- 0.00 -O- -0.06
S S
g G—o — 6 —o0 5
s S @/@,,e"@
D D
3 S
10_2 2 3 4 5 10_1 2 3 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 5.1: Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa

Method (Dashed) with At = h? and P, — P; Elements.

223

Figure 5.2: Error Functions for Gauge-Uzawa Method with At = h? and P, — P,
Elements (DOF = 24,963).

224

s Velocity in L2 . Velocity in L
10 10
-©- 0.97 -©- 0.97
-O- 0.97

)
w
)

w

Log of Error
=
o

Log of Error
=
o

10" 3 4 5 10" 3 4 >
10 10 10 10 10 10
Log of DOF Log of DOF
. Pressure in L2 0 Pressure in L*
10 10
-©- 0.91 -©- 0.79
-0~ 0.93 -O- 0.84

Log of Error
[
o

Log of Error
=
o

10 3 4 5 10° 3 4 >
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 5.3: Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa

Method (Dashed) with At = h and P, — P, Elements.

225

Figure 5.4: Error Functions for Gauge-Uzawa Method with At = h and P, — P;
Elements (DOF = 24,963).

226

Velocity in L2 . Velocity in L

10° 10
-©- 2.01
-O- 2.01
-3 ~
§ § 10
O, w
5 10 S
g g .
10_5 3 4 5 10_5 3 4 5
10 10 10 10 10 10
Log of DOF Log of DOF
. Pressure in L2 0 Pressure in L*
10 10
-©- 1.90 -o- 1.77
-O- 1.90 -O- 1.77
-2 -1
] 10 S 5 10 —
v w
S ks
g g
10 - 10
10" 3 4 5 10° 3 4 >
10 10 10 10 10 10
Log of DOF Log of DOF

Figure 5.5: Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa

Method (Dashed) with At = h? and P, — P; Elements.

227

Figure 5.6: Error Functions for Gauge-Uzawa Method with At = h? and P, — P,
Elements (DOF = 74,371).

228

s Velocity in L2 . Velocity in L
10 10
-©- 0.97 -©- 0.97
-O—- 0.98

)
w
)

w

Log of Error
=
o

Log of Error
=
o

10_4 3 4 5 6 10_4 3 4 5 6
10 10 10 10 10 10 10 10
Log of DOF Log of DOF
. Pressure in L2 0 Pressure in L*
10 10
-©- 0.95 -©- 0.73
-O- 0.97 -O- 0.76

Log of Error
[
o

Log of Error
=
o

10 3 4 5 6 10 3 4 5 6
10 10 10 10 10 10 10 10

Log of DOF Log of DOF

Figure 5.7: Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa

Method (Dashed) with At = h and P, — P, Elements.

229

Figure 5.8: Error Functions for Gauge-Uzawa Method with At = h and P, — P;
Elements (DOF = 74,371).

230

5.5.2 Example : Smooth Solution on Regular Mesh (b)

in Figure 1.2

As we saw in Figure 5.1, the error of pressure does not decay to 0 without discrete
inf-sup condition in distorted mesh. Gauge method show the error of pressure
converges to 0 in Figure 3.25, even though it is not decay in distorted domain.
But Figure 5.9 displays that the error of pressure for Gauge-Uzawa does not
decay, like Chorin-Uzawa in Figure 2.13. Thus we conclude Gauge-Uzawa and
Chorin-Uzawa methods are sensitive to discrete inf-sup condition even in regular

mesh, but gauge method does not.

231

S Velocity in L2
10
S
oo
% 10
D
o
—
10_5 2 3 4 5
10 10 10 10
Log of Dof
o Pressure in L2
10

Log of Error
[
oI

-3

10
10

10° 10* 10
Log of Dof

Velocity in L

10"
-3
§ 10
i
©
g
—10™
1075)
10 10
Log of Dof
o Pressure in L*
10
5
=
5
D
(o]
-
-2
10 3 4 5
10 10 10 10

Log of Dof

Figure 5.9: Error Decay of Gauge-Uzawa with At = h? and P, — P; Elements on

Regular Mesh (b) in Figure 1.2.

232

Figure 5.10: Error Functions of Gauge-Uzawa with At = h? and P, — P, Elements

on Regular Mesh (b) in Figure 1.2 (DOF = 24,963).

233

5.5.3 Example : Singular Solution

We perform in this subsection Example 1.3.2 including singularity for pressure
at the reentrant corner. As we studied in subsections 2.3.4 and 3.7.4, the other
methods are suffering for the corner singularity, and give us not reliable results
for this example. However the error of Gauge-Uzawa method is decreasing with
same rate in Figure 5.11, also the pick is disappear for velocity at the reentrant
corner in Figure 5.12. This example is a counter punch to make us conclude that
the Gauge-Uzawa method is the higher level scheme than any other projection

type methods.

o Velocity in 12 . Pressure in L2
10 T T 10 -
—-©- 0.52
-O- 0.68
10°
& g
g v
510 ¢ k]
j=2] j=2]
o o
- —
107}
10_3 2) 3) 4 5 10_2 2 3 ’ 4 5
10 10 10 10 10 10 10 10
Log of DOF Log of DOF

Figure 5.11: Error Decay of Gauge-Uzawa Method (Solid) and Chorin-Uzawa
Method (Dashed) with At = h and P, — P; Elements.

234

Figure 5.12: Numerical Solution of Gauge-Uzawa Method with At = h and
P, — P, Elements (DOF = 83,903).

235

5.5.4 Example : Forward Facing Step

This example is to find steady state solution for given initial value. A crucial
difficulty of this example is that the initial condition is not satisfied divergence

free. The domain Q = ((—1,1) x (—=1,1)) — ((0, 1] x [-1,0]) and the initial values

e

u=1.0—y=xy, if x =—1,

Y u=80%(1.0—y)y, ifz=1, (5.5.1)

u =0, otherwise ,
\

where v is the first component of velocity, and the second component v is 0 in €.

The non-dimensional numbers are chosen to be

Re =200, At=0.01, h= . (5.5.2)

The Figure 5.13 is n stationary flow in re-entrance domain. In this example, Re

Initial Value Stady Sate Solution
15 : : : : : 15 : : : :
1 L. 1
= =
05 = %] 05
= e
0 = 2 0
-0.5 § -0.5
-1 2 -1
-15 -15
-15 -1 -05 0 0.5 1 15 -15 -1 -05 0 0.5 1 15

Figure 5.13: Initial and Steady State Solutions.

is 200, At = 0.01, and h = 55.

236

5.5.5 Example : Driven Cavity Flow

This experiment is performed to find the steady state driven cavity flow with
initial value 1 on top boundary for the first component u for velocity, and 0 on

the others. The non-dimensional numbers are chosen to be

Re =10,000, At=1, h=4. (5.5.3)

These extreme values are chosen to test the stability of the Gauge-Uzawa scheme

which is proved in Section in 5.2.

Figure 5.14: Driven Cavity Flow for h = ﬁ, At =1, Re =10, 000.

237

Chapter 6

Gauge-Uzawa Method for the Evolution

Boussinesq Equations

The goal of this chapter is to apply the Gauge-Uzawa method of Chapter 5
to the Boussinesq equations which govern the dynamics of incompressible fluids

due to thermal driven convection. First, we introduce the following Boussinesq

equations:

(ut—i-(u-V)u-f-Vp:,uAu—gaH—i-f, in Q,
divu =0, in €,
u(x,0) = uy, in Q,

{ u=0, on 0f2, (6.0.1)
O+ (u- V)8 = BAO+D, in Q,
0(x,0) = 6, in €,
=0, on 0f),

\

where (2 is an open bounded convex polygon in R (d=2 or 3), f and b are forcing

terms, g is the vector of gravitational acceleration, u viscosity, a the coefficient of

238

thermal expansion, and 3 the thermal diffusivity. The physically unknowns are
velocity u, pressure p, and temperature 6. Let L be a characteristic length, U a
characteristic velocity, and © a characteristic temperature. Let the characteristic
time T satisfy T = 5 We can now measure x, u, 0, and t relative those scales

by changing variables and introducing the following dimensionless quantities:
Ui=—, X==, 0=—, t=—. (6.0.2)

The Boussinesq equations can thus be written in the dimensionless form

Gr

/

1
: - Au=—— i
u+(u-V)u+Vp Tl Rezge—i—f, in Q,
divu =0, in €Q,
u(x,0) = uy, in Q,
q u=0o, on 0€1, (6.0.3)
1 .
0+ (u-V)f = RePrA0+b’ in Q,
G(X, 0) = 00, in Qa
6 =0, on 0f),
\

LU
Reynolds number: Re = —
14
Prandtl number: Pr = %
L3
Grashof number: Gr = GSQ (6.0.4)
er?
Rayleigh number: Ra =82 = GrPr
pup
Richardson number: Ri = ﬂ
Re?

239

6.1 Gauge-Uzawa Method for Boussinesq Equa-
tions

Now we apply Gauge-Uzawa method to solve Boussinesq equations. We use
discrete velocity V,, and pressure P, spaces as defined (1.2.38), and discrete tem-

perature space is
Th = {0 € Hy : 0n|x € P(K), VK €%} (6.1.1)

We note the polynomial degrees of velocity and temperature spaces are the same;

in both cases, the degree k of P(K) is k > 1 fixed.

Assumption 8 (Discrete Initial Condition for Temperature) The initial 69 satisfies
(O, ¥n) = (B(to), ¥n), Vion € Th. (6.1.2)
Now, we introduce the Gauge-Uzawa method for the Boussinesq equations (6.0.3)

Algorithm 6.1 (Gauge-Uzawa Method for Boussinesq Equations) Start with ini-

tial values s = 0, u) given in Assumption 7 and 0 given in Assumption 8,

Step 1: Compute u"Jrl €V, as the solution of

~n+1 _ n
(5 Alz’“ i) + N (uf, At wy) + 5 <Vu”Jrl Vwh)
1.
L) = g)) s V£V
Re Sp, A1V Wp) = R€2 g ; Wh n+1): Wh), Wh h>
Step 2: Compute pZH € Py, as the solution of
(Voptt, Vibp) = (divap™, vn), Vo, € Py, (6.1.4)

240

Step 3: Update sﬁ“ € P, according to

<Sn+1) Qh>) qh) <d1V un—|—1) qh> th S II;Dh,-

Step 4: Update u"+1 according to

n+l _ osn+l n+1
u, =u," +Vpy

Step 5: Compute 0;‘“ as the solution of

(Op+ = O n)
At

+N(n+1 ven-}-l ¢h)

+ RePr

n+1

If necessary, compute p," " € Py, according to

n+1
ntl _ _Ph i n+1
Pr At + Resh

6.2 Regularity of Boussinesq Equations

(VO V) = (b(tnsn) s ¥a), Yoy € T

(6.1.5)

(6.1.6)

(6.1.7)

(6.1.8)

To prove stability and convergence of Algorithm 6.1 to the Boussinesq equations

(6.0.3), it is enough to consider the temperature terms, because we have already

examined those of the Navier-Stokes equations in Chapter 5. The goal of this

section is to prove

0,0, € L™ (0,T; L*(Q)) € L=(0,T; L*()),

(6.2.1)

which is the same regularity with forcing term f as in Assumption 2, in order to

prove that Lemma 1.5 is still valid for the Boussinesq equations (6.0.3), and find

realistic regularity results for temperature.

241

Assumption 9 (Regularity for Temperature)
0(0) € HX(Q) and b, b, € L=(0, 00; L2(Q)).

The following L2-based a priori estimate for convex domains is well known in

elliptic regularity theory [19].

Lemma 6.1 Let Q2 be a convexr bounded domain. Let 6 be the solution of

—NO=f, inQ
(6.2.2)
=0, on 0,
Then we have the a priori estimate
1611y < Clifllo- (6.2.3)
So we can use
161, < CllAol,. (6.2.4)

Lemma 6.2 If Assumptions 1-8 and 9 hold, then the solution 0 of the heat equa-

tion with convection in (6.0.3) satisfies

sup ([l0)llo + 16:)lI_, + IVO@D)ly) < M, (6.2.5)

0<t<T

and

1 T
o [ol < (6.2

PrOOF. We note ||u|; < C by Assumption 3. By multiplying by 6 and the heat

equation in (6.0.3), integrating, and integrating by parts, we get

d 1
SN0l + 719013 < Clol”,. (627)

242

Integrating both terms with respect to ¢ derive

1 T T
16(T)ls + -5 TePr IIW(t)IIﬁdtS ||¢9(0)||§+C/0 b()]|Z,dt < M. (6.2.8)

By multiplying heat equation in (6.0.3) by —/A#@, integrating, (6.2.4), and Lemma

1.4, we obtain
SIVOE +— A0l < N w6, 26) = (b, 1)

< ([l [IVO1 19813 1 28]l + [18]l1 2611,

s . (6.2.9)
< ClIAOlGIIVOlG + l1olloll A8l

1
< SR.Pr —— || A0||5 + CRe*Pr®|| Vo[> + CRePrljb|;.
By integrating with respect to ¢, and by (6.2.8) and Assumption 9, we have
1 T

IIM(t)Ilﬁdt

T T
< ||V0(0)||§+C’R63Pr3 / IV8(t)|2dt + CRePr / 1b(0)|2dt < M.
0 0

(6.2.10)
By using (6.2.8) and (6.2.10), we get
O, n
o, = sup e
neH () Imll4
—(u-V)0+ 5520+ b,
= sup (V)0 + mp; i (6.2.11)
neH () ||77||1
C
< Cllul, V6l + 5 IV 0l + Clbl._, < M.
The proof of Lemma 6.2 is completed. [|
Lemma 6.3 If Assumptions 1-3 and 9 hold, then
OiltlgT(Hut(t)Ho +116:(llg) < M (6.2.12)

243

and

[(el + v+ 90 @ @< v 21y

PROOF. We define a new variable u as a projection of —Au. Then

4
—Au+Vg=1u, inQ,

q divu=0, in €, (6.2.14)

u=0, on 0f).

\

Then Assumption 1 gives us

[ully + llall, < [lafl, (6.2.15)

Multiplying the momentum equation in (6.0.3) by u and integrating by parts, we

get

1d o 1 .0
el [v/ —
5 Ivall + —lal;

:N(uauaﬁ)_<%g07 ﬁ>_<fa ﬁ)

CGr

oz 10115l + CIIENl1Tllg (6.2.16)

1 1
< Cllufl, [[Vallf [[Vullg[[all, +

CGr?
Re3 |

CGr?
Re3

LR 2 2 T <2
< Cf|Vullg[[alls + |0]lo + CRellf]|; + @Hullo

1

2 2 2 ~112

< CRe’||Vully + 16115 + CRellflly + 57— lallo.

2Re
Integrating with respect to ¢, we get, by Lemma 6.2, and Assumption 2 and 3,
T
VoDl + - [o)
0 Re 0 2

r Gr?
<IVaO);+C [(REITal+ Gl + RelfOI) e (6217

< M.

244

Multiplying the momentum equation by u; and integrating, we have
2 C
luclly < Cliull,[[Vullglluclly + 5l Aullglluell,
C
+CIEllolluello + 5 5 161lollwello

C C 1
< Clully+ oI Aully + CUEIE + 216153 + 5l

(6.2.18)

By integrating with respect to ¢, we get, by Lemma 6.2 and formula (6.2.17),

[Tt <o [(@ + 1801 + el) ae < .

We note, by (6.2.18),
2 2 ¢ 2 2 C 2
[(Ol < Ol + gl Au)E -+ CIFO + 00}

< C.

Now, differentiating momentum equation with respect to ¢, we have

1
—Aut = ﬂet + ft-

Uyt =+ (ut . V)u + (u . V)ut + th — Re R62

(6.2.19)

(6.2.20)

(6.2.21)

Multiplying (6.2.21) by u; and integrating, and using Lemma 1.4, we deduce

1d 1

5%”1%”3 + EHVU?&”(Q)

Gr
5|

1 1
< ¢ (Ivull i uliad, + o

10:ll [l + ||ft||_1||ut||1)

3 t - Gr
<C <||ut||f||ut||3 + pooa IOl [l + ||ft||1||ut||1)

CGr?

< CRe®||u|5 + W'

2 2 1 2
10121 + CRellfellZ, + 5 [IVuelly.

245

(6.2.22)

Integrating with respect to ¢, and Lemma 6.2 and formula (6.2.19)-(6.2.20) imply
1

T
T A OII

T GT‘2
< I+ [(ROl + FEI0O1E, +IROIF,) dt (6229

< M.

Now, we begin to estimate heat equation. (6.0.3) yield

16:0)[] < IIU(0)||0||V9(0)|IO+R 5, 1800, + 115(0)lo

(6.2.24)
< C.
Differentiating heat equation with respect to ¢ yields
Ott + (ut . V)0 + (u . V)gt — —RGPTAet = bt. (6225)
Multiplying (6.2.25) by 6; and integrating imply
5 0l + = Vel
< Cllugll, 101l 161, + Cllbtllfllletlll (6.2.26)

< CRePr (||t9||§ + ||bt||2_1) 5511V t||0

2RP

We note |ju]|, < C by (6.2.23), and |6,(0)||> < C by (6.2.24). Integrating with
respect to t, we get, by Lemma 6.2,
1 T)
1(T)lls + 5~ ||V9t(t)||odt
T (6.2.27)
< 16.0)|2 + CRePr f (IVOQ)IE + Ib(OI,) dt < M.
The proof of Lemma 6.3 is complete. [|
Since we now know 6 and 6, € L> (0,T; L?(Q)), we can consider the temper-

ature # in the momentum of (6.0.3) as forcing term f. Consequently, we can use

246

the regularity results of Lemma 1.5 for the Navier-Stokes equations and apply

the resulting regularity of (u, p) to derive further regularity of 6.

Lemma 6.4 If Assumption 1-3 and 9 hold, then

sup [|0(#)]l, < M, sup o(2)]|6:(1)]l, < M,
0<t<T 0<t<T

T
[o0 105+ 10u1) de < .

and

T
/ 10ull? dt < M.
0

PROOF. From the heat equation, we get, by Lemmas 6.2 and 6.3,

1801, < 64y + Il lVell, + o], < M.

Multiplying (6.2.25) by —A#,, and integrating imply

1d|
2dt

< Clluf|, [101l, 1201, + Cllully[[VO: Il Ab:l + Clibello 1 A0l

IVO,|2 + | 0,5

RP|

1

< CRePr ([l + [V&:ll5 + Iblly) + 555

| A6 |g-

Since the chain rule give us

d 2 ' 2 d 2
& OIVAWIE) = DIVAOIE + o) SIVaO,

Multiplying (6.2.32) by o(t) deduce

d
& EOIVaI) + A

o' ONIV8()llg + CRePro(t) (Ilully + 1V8llg + l1bellg) -

247

(6.2.28)

(6.2.29)

(6.2.30)

(6.2.31)

(6.2.32)

(6.2.33)

(6.2.34)

Integrating from 0 to 7" for time ¢, we obtain

1 T
T T 2 - 2
DIV + s | oOloa
- . (6.2.35)
< [1980+ CRePr [(o) (el + 198415 + Il) e

the formula (6.2.35) can be bounded by Lemma 6.3. From (6.2.25), we derive

c
10ully < ClluellolIVOlly + CllullolVO:lly + W”A@”o + Clbelf,
) (6.2.36)

< © (Tl + 190 + 1804, + 1)

Squaring, multiplying o(¢), and integrating from 0 to 7" for time ¢, we get

T T
/0 o (t)|0ullodt < 0/0 a(t) (Iwells + 11V llg + llbello) de
. (6.2.37)

2
“epr [, cONl5d

By the formula (6.2.35) imply that (6.2.37) is bounded. Now we prove (6.2.30).

The formula (6.2.25) and Lemma 6.3, give us

1
el < € (Il + ol + 55 19600+ 0],)

s (6.2.38)

<
< ¢ (I + 10+ 25

V6., + ||bt||_1) |

Finally squaring, and integrating from 0 to T for time ¢, we derive

T T
/0 10ull_dt < C / (luelly + 16:]l, + lell_,) dt

T (6.2.39)

tepy [, I90ode <M. m

6.3 Stability

In this section, we show that the Gauge-Uzawa method is unconditionally stable

for the Boussinesq equations.

248

Theorem 6.1 (Stability) Gauge-Uzawa method is unconditionally stable in the

sense that for all At > 0 the following priori bound holds:

N4+1 0N+1 ﬁ N+1 9 - \va e 2
o g+ lon o+ o Isn* o +2 22 v er ™l

N
+ 3 (gt =gl + o+ = 0712)

n=0
At . At o=
S WAL S ALY
At
< Judlls + 168l + =, llshllg

+OAE Y (IEEas)I2) + 1Btz %) -

n=0

PROOF. By choosing wj, = 2At4}"" in the momentum formula (6.1.3) in Algo-

rithm 6.1, we get

2(upt —up,) 4+ 2AN (up, o AR

PYAN AR n 2A¢ n
+§ (vuptt, vaptt) — T (sp, divayth) (6.3.2)

or equivalently

2Nt
il = gl + [= wh g+ 2 Vi g + -1 Van g

GrAt
Re?

2At

To (sh s div BT + 248 (f(tng) , BT) — (gom, ap*'y (6.3.3)

:A1+A2+A3.

249

We already estimate A; and Ay by (5.2.7) and (5.2.8), respectively. And Ajz is

bounded by
Gr At

Re2
Gr At

As

IN

16" llo][55 [,

6715 + Cata
We thus have

At
il = lhufllg + i = wifls + 20| Vo flg + 5 v

Aty
+ 20 (sl = Nsil?)
Gri/t ~
< OB E ()12, + — 10715 + OOt 5.

Choosing 1, = 2At07" in the equation (6.1.6) yields

2At

65412 = oplIZ + o5+ — s A

hHo

< CAY[b(tns1)], + AtHWIZ“Ho

or equivalently

16l = 16815 + 16+ = 68 g + 5, 170 s

< CAH|b(tns1)]1%,-

By adding (6.3.5) and (6.3.7), we obtain

At
i g = Il + flup ™ = uh g +2HVP”“H§ + oreIVE g

HH”“HO 0513 + 1037 = 0312 + o | 905

20 (s 12~ sl

Gr At
< OO (£ (tsn) 2, + Ib(tara)I2,) +

o671+ C At

250

(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)

Upon summation over n from 0 to N, we deduce

N
ot + ol + D2 (lhup = wps + o+ = 63]17)
n=0

At 2 At Y 12 At al 1 []2
+5cllsn o+ popr ;::0 IV s + 55 nz::() [V, g

N

il At Gr2At
230 [Vt < [+ Rl + S8 + RS e
=0

n=0

N N
+OALY T (IE) I+ I0Ctns)IP) + CAE Y a2

n=0 n=0

Using Gronwall inequality, we prove the asserted estimate (6.3.1).

(6.3.9)

6.4 Error Estimate for Velocity and Tempera-

ture

In this section, we prove the convergence of velocity of fully discretized Algo-

rithm 6.1 for Boussinesq equations. Since we have just verified stability and

convergence of Gauge-Uzawa method in Navier-Stokes, we add the analysis for

temperature terms in the proofs of NSE in Chapter 5. Since we proved 6 and

0, € L*° (0,T; L*(f2)), we can use all lemmas in Chapter 5 upon considering tem-

perature € in the momentum equation as a force function.

Let (U, Pty € HIQ x L2(Q2) be a weak solution of the following time

251

discrete Stokes equations including exact convection and temperature:

(<W w> + é (VU™ Vw) — (P! divw)
{ =), w) = N (@ltns), b)) = 1 (80(na) W), Vow € (),
(g, divU"*) =0, Vg € L2(Q).
\ (6.4.1)

We recall notation of Chapter 5 for

G" = u(tyy) — U and g™t = p(tny) — PPHL (6.4.2)

Since we prove # and 6, € L? (0,T; L*(Q)), according to Lemma 6.2, we can use

get directly the following estimates from Lemma 5.2:

Lemma 6.5 Let Assumptions 1-8 hold. Then we have

N N
2 n nll2 At n 2
6o+ 2 le G+ g X Iverlo<oadt (643
and
N
sy oy < o (549
n=0

Let (Up™, PPt € V), x Py, be a discrete solution of the following weak Stokes

equations
(
(VU Vwy) + (VP wy)
. = (Vu(tni1), Vwa) +(Vp(tns+1), Wa), VW, € Vy, (6.4.5)

<7“h, div UZ+1> = 0, V’I"h €]Ph,

\

where (u(t,41), p(tnt1)) is the exact solution of Boussinesq equations (6.0.3) at

the time step t,,11. We now recall the define error functions introduced in Chapter

252

GZ—H = (n+1) Un+1: g;LH—l - p(n+1) Pn+1
Frtl — Un+1 _ U2+1, 77n+1 prtl _ P}:H—l’

and note that the following lemma follows from Lemmas 5.3 and 5.4.

(6.4.6)

Lemma 6.6 Let Assumptions 1, and 4-6 hold, and let the exact solution (u(t,41),

p(tay1)) € HTY(Q) x H5(Q). Then we have
G|, + A G|, < OR ™ ([[ultnr) ||y + IP(tasa)ll,)
NGl = 11GH | ey T NIGH] 12y < M,

lgn ™y < CB* (lultn)llysy + (i)l

1o < el + |63, < C(at+ ™,

IN

N
Aty [VE,

n=0

N
sty ([ve s + [vest|l)
n=0

< C(A#* + h%),

and

A3 < e (10 + i) < oot +).

n=0 n=0

We recall the additional error functions of Chapter 5

En—|—1 — Un—|—1 u';lL—H, En+1 — Un—l—l ﬁZ—H’ en—l—l — Pn—|—1 pZL-H

n+l __ n+1 n+1 Sn+l n+1 An+1 n+1 n+1 n+1
Erftl = Ut —uptt, Ertl =07 = Pt il

’ h I

The following properties mimic those of Lemma 5.5:

253

(6.4.7)

(6.4.8)
(6.4.9)

(6.4.10)

(6.4.11)

(6.4.12)

(6.4.13)

Lemma 6.7 (Properties of Error Functions) We have the relations among the

error functions in (6.4.13):

(E™, V) = (EFT', Vg,) = (F*1, Vg,) =0, Vg, € Py, (6.4.14)
Ertl _ yntl _ ﬁz-}—l
(6.4.15)

= U™t —upt! 4 Vit = BV 4 Vit

Ez—f—l — UZ—H _ ﬁz—kl
(6.4.16)
=Up -yt + Vot = BT 4 vt
and
Erfl =P L BN gnd ErH = B BRI (6.4.17)
The following lemma can be derived directly from Lemma 5.6,
Lemma 6.8 Let s, € P, be defined in Algorithm 6.1. Then we have
~ 2
st = silly < | VB (6.4.18)
0

We now introduce several functions related to temperature. Let 6(¢,.1) be exact

temperature at time step n+1 and 0,(t,11) € Ty be the L2-projection of (t,1):

(On(tns1) , ¥n) = (O(tus1) s ¥n), Vibn € Th. (6.4.19)

We define the error functions of temperature as follows:

e = B(tun) = O et = On(tur) — O (6.4.20)

and

" = 0(tyi1) — Op(tnie)- (6.4.21)

254

Then for the interpolation error 6!, we have

67|, + All6" |, < CRHI0(tns) 4 (6.4.22)
and

1™ = 110" ooy + 167 oy < M- (6.4.23)
Our purpose in the following lemma is to show that u}*', G}*' and 67" are

order (’)(Ati + h®) approximations to their exact counterparts. This result will

be used to improve the error estimates to O(At + h**1) in Lemma 6.11.

Lemma 6.9 Let Assumptions 1-9 hold, and let the exact solution of (6.0.3) sat-

isfy
(W(tnr), P(tnsr), Otnsr)) € HTL(Q) x H(Q) x HT(Q). (6.4.24)

If h2 < C At with Cy > 0 arbitrary, then we have

1 N
B+ e o + 5 3 (1B = Bl + flem+ = &7]f;)

n=0

N
2ReZHVEn+1 +ZHV oo + RePTZHV e 2 (6.4.25)

F 2 sm 2 < oAt).

PROOF. Upon subtracting (6.1.3) from (6.4.1), we get

Bt _ e L
. n+1
< N, , wh> + Toe <VE , th>

1 Gr
= (P, divwa) — - (s divws) = 2 (8(0tarn) = 07), wa) (6:4:26)

—./\/(u(tn+1), u(tn+1), Wh) +N(uh, Z+1 Wh), VWh € Vh.

255

If choose wj, = 2AtEP! = 2AL(E"! — F**1), then (6.4.26) becomes

2\t <

2 (B! — B, Byt)+ =5 (VB VET)
€

= 2nt (P div Bt - 2}% (i, aiv)

(6.4.27)
—OAIN (Utnsr), Ultng), BPFY) + 2AMN (uf, 87+, B+

2AtGr N
o (B (O(tr) = 07), Bt

By formulas (5.3.31) and (5.3.32), (6.4.27) becomes

2Nt
[l = B + B - |

‘VEH-‘rl

lo+ +2|[v,

= 2(E" — ", PP 4 2At <VEn+1 VFn+1>
+2A¢ <P"+1 div E"+1> — % <sh , div E"+1>

YN (N(u(tn+1) u(tpi1), En+1) N (up,aptt, En+1)>

2AtGr ~
T T Re <g(0(n—|—1) 9h) Eh+1>

(6.4.28)

:A1+A2+A3+A4+A5+A6.

Since the estimate for A;-As in (6.4.28) are the same as (5.3.34)-(5.3.42) in Chap-

ter 5, we need to show just the following Ag

CAtGT 2 n 2 =n 2
ae < SR8 (e s+ B
R (6.4.29)
e [e

256

Upon plugging (5.3.34)-(5.3.42) and (6.4.29) into (6.4.28), we derive

n n 1 n At An 2 '
B2 = B 15 + 5B+ = B2 lg + o [VB + Va5

At . CABGr [+
+ae (Il = i) < cllF+ s+ 5™ [necae

+ORent (B2 + G2 + G 2+ o 2) (6.4:30)
tnt1
+CAE (J[utar)ll; + IVD(tas1)lg) + CReAE / e () ot
tn
2
0))

We now estimate temperature equation. By virtue of the Taylor theorem for the

CAt n CAtGr
+—HVF +1”0 Re2

<||€n||§+ HFn+1”§+ HEn—H

heat equation, we get

g(tn+1) - o(tn) 1
N + (u(tng1) - V)O(tng1) — RePr

AB(tir)

(6.4.31)
= b(tn-{—l) + Rg+la

1 tn+1
where Ry(t,41) = — / (t—t,)0(t)dt. Then the weak formulation of (6.4.31)
tn

At
is
1
A Our) = 0(t), ¥) + N(u(turn), 0(tusa). ¥)
(6.4.32)
e (V0(t0i1)., T9) = (Bltai))+ (B), Vo € HY(Q).
By subtracting (6.1.7) in Algorithm 6.1 from (6.4.32),
<6n+1 _ gn’ "/)h> 1 o .
At + g (VE"T Vi) = (R, tn)
(6.4.33)
~N(u(tn1), 0(tni), ¥n) + N (W™, 007), Vi, € Th.
By choosing 1, = 2Atel™!, we have
PYAN
2™ =", epty + —— RePr (Ve"tt, Veprtt) = 2At (Rt eptt)
(6.4.34)

—QAtN(ll(tn+1),9(tn+1) n+1)+2AtN(n+1 024—1 824—1)'

257

Then the left hand side terms become

2<8n+1 e, 6Z+1> _ H€n+1H§ _ ||5"||(2) + H5n+1 _ En”§
(6.4.35)
-9 <€n+1 - 6n7 (5n—|—1>
and
2At n PYAN n
2O (Ve Vept) = ol |ver -
. 24t n+1 n+1 o
TePr <Vs , Vo >
So (6.4.34) becomes
20t
eIy = lle™lla + [l = "flg + p 1 V™,
= 2At (R, eptt) +2(e" =&, 6”+1> + o pr 20t <V KRN VAR
(6.4.37)

YN (N(U(tn+1),0(tn+1) 824—1) N(n+1 0n+1 24—1))
:A7+A8+A9+A10-

We now estimate the split terms in 6.4.37). The beginning 3 terms are derived

easily as follows:

At " "
Ar < o (Ve o+ [V 5)
tn+1 (6438)
+CRePrAt? / 100:(t) |, dt,
tn
1
Ay < et =g + Ol o, (6.4.39)
and O
n n 2
Ag-gRep Ve ly + 5o 1 V5"l (6.4.40)

258

The last term in (6.4.37) can be split by
A = —2AtN(a(tn1) — up ™, 0(tes1),ep ™)
—QAtN(n+1 5n+1 n—i—l) QAtN(n+1 'Z—H E;Lz—i—l)
= A+ Ao + Ao
Here we note Ajg3 = 0 by (1.2.61), and the others are estimated by

Ay < CAt”U—(th)_uZHH0||0(tn+1)||2HV52+1Ho

< CRePrAt (||E"+1H§ +llem) + Ve

4RePr
C JAN
RePr

and

Ags = 20N (u(tpgr) — uz+1 aas ZH)
_2AtN(u(tn+l)7 671,—}—1 n+1) AlO 4 -+ Al(] 5.

Since we have [|6" ™| < M by (6.4.23), Lemma 1.16 implies

s < Coutten) = o 7[5,

< CRePrat(||G™[7 + B+ 7)
+aepel 7 o+ el 9
By Lemma 1.4, we obtain
As < CA(tns)lL]|6"]| Vert,
< CRePrAtH(S"HHi—F%H anl %H s

259

0

(6.4.41)

(6.4.42)

(6.4.43)

(6.4.44)

(6.4.45)

Upon plugging (6.4.38)-(6.4.45) into (6.4.37) we deduce

n n 1y, n At
le™Hlg = lle™lly + 5lle™" = €"llg + 7 I Vetarn)ll
< CReProst ([[B3 + 167 5) + o V0 (6.4.46)

tn+1
£+ CRePrat [lou(o)? it
tn

The adding (6.4.30) and (6.4.46) implies
1 At ~ 2
B 5 — By + 5B+ — B lg + o | VE| + Va5

e o= el + 5 em = el + opr Ve g
At
+ 5 (s lo = lsklls) < CRePrast (B 5+ [[G™[5)

+CRet (B3 + 167} + |G [+ r+1]7)

CNAt
RePr

(6.4.47)

+CAL ([[ultnst) 13 + [VP(tasn)l5) + 5nn [V6o

CNAt
Re
CNAtGr
Re?

tn+1
+O|| B2 + HVF"“||§+CR@P7~A1&2/ : 1160 (2)]2 it

n
2
0

o1 CALGr [+
+CReAt? /t ||y (8)]|2dt + R /t 16:.(t) ot

+0”5n+1H(2)+ (||En||(2)+||Fn+1H§+ En—f-l

260

On adding over n from 0 to N,

N

1
B+ e o + 5 3= (1B = B[l + [l = &)

n=0

N
ENWW1+ZWMWO ENVWM
At

+ s o < 1B lg + 1<l

+CReP7“NZ (Bl + lle;)

n=0

N
+CRetsty (IB1; + 16 + |65 o + [l 5) (6.4.48)
n=0

CALGr = () . w12 o llanstll?
+W§ (HE ||§+ HF +1H0+ ‘ E" 0)
9 N CAt n+1
+OAE S (altas) I} + 1VP(tar)I) ZHW ls
n=0

- CALGr [+
03 (ol + [Fm+17) + }%QT/’ o0t
to

n=0

tN+1 tN11
L CRePrA / 16u(D)|12, dt + CReAL / g ()12
to to

We note that assumption h? < C;At, in conjunction with (6.4.10) and (6.4.22),

yields

O ([lo s + [[F) < C(at+h2). (6.4.49)

Since [|E°|[2 + [|€%l5 < Ch*+2 (Ju(0)|1%,, + [16(0)]1%,,), the discrete Gronwall
lemma, together with Lemmas 6.5-6.6, and (6.4.22), implies (6.4.25). n
Let (v ¢"*1) € HT(Q) x H*(Q) be the solution of the Stokes equations

(5.3.45), and let (v ¢'™") € V), x Py, be a discrete solution of (5.3.46).

261

Let x"*1 € HY(2) be the solution of the Poisson equation

—AY"T =" in Q

I

X" =0, on 9.

n+1

In view of Lemma 6.1, x™*" satisfies

n+1|| ” n+1”
”X , < Cle 0

n+1

Let x}," € T}, be the discrete counterpart of x, namely,

(VXpt, V&) = (", &), V&, € Ty.

Such a x;, satisfies the interpolation estimate [1, 12, 28|

I =i o + Al =i < ORI

< CR?[le™ o
whence, from Lemma 1.17,

[=il < Cllem*

We have the following basic lemma [12, 28]

(6.4.50)

(6.4.51)

(6.4.52)

(6.4.53)

(6.4.54)

Lemma 6.10 Let e"™' and x"' be the solutions of (6.4.50) and (6.4.52), re-

spectively. Then there exist positive constants C1, Co, such that

Culle™ [y < [Vl < Coflem -

Then we can obtain easily

Iy < C UVl + 2l lo) -

262

(6.4.55)

(6.4.56)

Lemma 6.11 Let Assumptions 1-9 hold, and let the exact solutions of 6.0.3
satisfy

(U(tns1), p(tas1), O(tns1)) € HTH(Q) x H5(Q) x H*TH(Q). (6.4.57)

If h? < CAt, then we have

2 2 At & 2 -~
T H<€N+1H_1 + 2—}262_: (HEnHHO + HEn+1

N

ReP Z n+1||0+z (‘En+1 En

)

et - 5n|‘2_1> (6.4.58)

< C (A2 + B2

PrOOF. We choose wj, = 2Atv;+! in formula (6.4.26) then we have

hn+1 n n+1 2A¢ n+l n+1
2(B"1 - E)+ - (VE™ v
NG
= 204 (P, div vi ™) = 2 (g0(tar) — 67), Vi) (6.4.59)

AN (u(tn+1),U(tn+1) "+1) + 2NN (uh, urtt v,’j“).

We note (s, , div vi™') = 0. By (5.3.54) and (5.3.55), we obtain

PYAN;
Vvl = I9VRIG + [V O3 = vid g + 5 1B
— 2At <VFH+1 Vv ’n+1>+ <F’n+1 En+1>
2At

— <V,0"+1 Vgt + 24t (P div vt
(6.4.60)
=20t (N (u(tnin), utng), vi™h) = N (up, @y, v ™))

2AtG
- R2T<g n+1) 9}1) n+1>

:A1+A2+A3+A4+A5+A6.

263

Since A;-Ajs are the same terms as (5.3.57)-(5.3.68), it is enough to estimate the

following Ag,

CNAtGr
A5 < 2SO) = Ol Vi,
At n n n CGr*PrAt,
< o (e o+ e -) + = N (6o

CAE? [+ 2
0, ()| dt.
16 = A DOl

Upon plugging (5.3.57)-(5.3.68) and (6.4.61) into (6.4.60), we deduce
At
[Vvitly = 19 VRl + IV 7 = vl + 3, B

tn+1
gCReAtHVv;;“Hﬁ+CReAth2Hn"+1H§+CAt2/ O
tn

+ oL (2[R 2 B2 R
CGr2Prt (6.4.62)
Pl 2+ 16 + |var) + LI vy

+OReAH(AL + h%) <||VG"+1|\§ +||vE

o)

At

CAt bot1
U (e e -) + OO 7 o
By choosing 1y, = 2Atx 71! in (6.4. 33) we have
2<€ +1 e, Xh+1> R B <V +1 VXh+1>
= 2At(RyT, XY — 200N (u(tni1), 0(tns1), X5T) (6.4.63)

+2AtN (n+1 0n+1’ XZ-{—I) .

The left hand side terms can be written as follows, by (6.4.50),

2em et) = 2(T (67),)
(6.4.64)

= |V = IVGIE+ IV 0 =) |

264

and

2Nt n n 2Nt n n n n
200 (et vty = 200 (e,) 4 (T, v

oA (6.4.65)

= o ([l g — et 0y + (v, V))

So (6.4.63) becomes

VAN A
RePr

(< n+1 5n+1> <V5n+1 VX +1>)

[V o = VxR + 1V G = X o + oy €™l

2/t
RePr

280 (N (),) ™) — N (0 057 55)).

— 280 (R) +
(6.4.66)

= A7 + Ag + Ag + Ayp.

We now estimate each split term as follow,

CA? [t 112
Ar< S [o) e+ CRest [V (6.4.67)

CAt }
RePr

A5 < pepr e s [, (6.4.68)

and
CAth n n CAt |, n

sy < Mgy ymn], 4 S2L)
CAth?

RePr

OAs (6.4.69)

RePr ”

At 8n—|—1||2

< m” 0

[vom+tla+ fal

And the last term in (6.4.66) can be split again by

A = =2/\tN (u(tn+1) —UZ“,H(th) XZH)
(6.4.70)
—2At./\/'(ntl nH,XZH) Ao + Aig

The first term in (6.4.70) can be estimated simply by

A1 < C’At”u tn1) = i o110) [VxR,
(6.4.71)

IN

2L (e +) + cRead v

265

and the second term split again
Aigp = 20N (u(tnsr) —upt e™ xith)
—2AtN (u(tnsr), €™ xp)
= 20N (u(tpgr) —upth e it — x*)

+2AU\/ (u(tn—i—l) _ uz-H’ 8n—|—1’ Xn—l—l)

—2AtN (u(tng1), €™ X)) = Ao + Aroa + Auogs.

Lemma 6.9 and formula (6.4.54) yield

Aa < COEM 4G el — x|

IN

CAt (At% + hs) Hv‘anHngnHHo

At
6RePr

IN

CRePrAt (At + 1) | Ve |2 +

n+1[|2
€™ lgs

Mg < COUE + G| Ve),

< car(att) [,

At

< CRePrAt(At+h®)||vem|2 + ehepr|

=

and
Aws < CAtuta)][[V,

At
6RePr

€™ Y| + CReProt|| Wit 2.

Upon gathering (6.4.70)-(6.4.75), we derive

At

n n At
Ao < 2L (B2 e) +

2RePr

e+l

+CReAt|VxpY |2 + CRePrAt (At + h2) ||Ver+ .

266

(6.4.72)

(6.4.73)

(6.4.74)

(6.4.75)

(6.4.76)

Plugging (6.4.67)-(6.4.69) and (6.4.76) into (6.4.66) yields

At

2 "“HO—IIVthIwHV(AR) e

"

(HE"“HO+ |Gm1[15) + CReat|[Vx|

CAth i (6.4.77)
oy 1987

< —

— 2Re
n CAt ”

RePr

"+

L CRePrAt (At + %) HV w2 4 CRﬂ / 10 (D) .
tn

By adding (6.4.62) and (6.4.77), we get

A R R S el o
V2~ 19+ 1Y 06 = X+ e
scRem(Hsz“m|\v»«z+1>\§+h2unn+l||§)

FOOL (2| R 2 4 B2 B B

HlEm o 16+ VA) + SR I

+CReAH (AL + hY) <HVG"+1 o+ | vE+

)

e (I =l o+ 02 v)

+ReP7"

CAt?

n+1
= 0,(1)|dt
TePr 110: ()l

+CRePrAt (At + h?) || Ve |2 +

CAt2 tnt1 tp+1
e [e e+ on [ol

tn

267

On adding over n from 0 to N yields

[TV 4 [T+ 28 S [4 2 e
h 0 Xh 0 9Re — 0 " 2RePr — 0

+ 30 (1D =Dl + 19 6 = x)l)

n=0

N
< CRet Y (|| Vvi[lo+ [V lo + b2 o)
n=0
N
> (PIVE o+ [E o+ (Bt - B

n=0

+0At
Re

CGr2PrAt &
G 2 e+ 9) + SRS e 6ar)

n=0

N
2s n+1||2 Tn+l 2
+CReAH(AL + h%) n§:0: (HVG o+ || VE 0)

CAt

N
COLS™ (et =+ w12+ 2| wam+|2)

+

N
+CRePrAt (At +h%) Y || v+

n=0

oA / L 0O + L 0@, +)] dt
to RePr 0" Re -1 0

We note that Assumptions 7 and 8 imply v) = 0 and x% = 0. By Lemmas 5.9,

6.5, 6.6, 6.9, 6.10, and discrete Gronwall lemma, we have

At & N
BN + [+ 5 B + >l s

2Re 2RePr
N (6.4.80)
3 (B =B + e = eP) < © (A2 4+ n22).
n=0

268

Also, by Lemmas 6.7 and 6.9, we see that

N N
a3 B < oy (B + 9
—~ 0 — (6.4.81)
< C (A + h*12).
which concludes the proof Lemma 6.11. []
6.5 Error Estimate for Pressure
The main goal in this section to show the improved estimate
N
S T|EM B < C (A8 + B> (6.5.1)
n=0
We begin by estimating the error of the first iteration time step.
Lemma 6.12 Let Assumptions 1-9 hold, and let h? < CAt. If
IVw(Olly <M and sup [u(®)] <M (65.2)
0<t<ty
then we have
1
2+ 5 (8" - 27 + Hel—e"l\i) e ([7B +1s40:)
(6.5.3)
+[Veills + lle'llo + 725 HV o < O (A +12+)
and AL
[Vvilly + Tae Bl + 9l + Reerﬁll\o
(6.5.4)

< OAE (A + B2

269

PROOF. We note s) = 0 and vj) = 0 by Assumption 7 and x) = 0 by Assumption

o+ skl

8. By choosing n = 0 in (6.4.47), we have

1
1B+ 5 (1B —Efly +[le" —=°5) + VE!
2 2Re

CAt
+HIVarllo + le*lo + RePTI\VIHO 1&g +1lello + 55,1961l
CAt
+CRePrat (B3 + 16 5) + OB [+ IV
+ORedt (|[BOfS + 1G5+ (|Gl + [l ;) (6.5.5)

t1
+CAL (Jlu(t)l; + IVp(t)lg) + CRePrAt? / 161 (8)][|2, it
to
CAtGr

~ 2
+ol s+ SR (el + 1+ 2

t CAﬁG
+OmAf/Hm@%ﬁ T/I%) lodt.
to

So we get (6.5.3) by the results in Section 6.4. Because ||E'[|; < CAt + h* by
Lemma 6.9, we do not need to choose small At in initial step. And by choosing
n =0 in (6.4.78), we have

[Vvills + 1933 < CRest (199 s + 19 lo + 21 ;)

CAt
e (PIVE o+ [F5 + B =B + ([&[5 + [l

Re
2
)

+VA|) + CRenHAt +) (chlnﬁ +|ve

CAt (6.5.6)
+ o= (Il =0+ [18"[lo + %[V o)
$EGT LI |2 4 CRepra (at+ 1) Ve

t1
rC8 [(I IO+ 10, + o)

Since ||[VvE[2 < |EY)Z < C(h? + h**2), we get (6.5.4) by the results in Section

6.4 and (6.5.3). n

270

Lemma 6.13 Let Assumptions 1-9 hold, If Cih? < At < Coh’s with arbitrary
Ci, Cy >0, and if
IVu(0)ll, < . (6.5.7)

then we have

At o
e e E ey D Bl (A Aol
n=1

N
tope 2|7 (B =)

< C (A8 + 42,

N
DM LAsEL o U
n=1

PRrOOF. Upon subtracting two consecutive expressions of (6.4.26), we have

En—f—l _E" En _ En—l 1 N R
< _ , wh> ;= <V (E"+1 - E") , th>

At At Re
= (P"" — P" divw,) — é (sp—spt, divwy)
N (u(tg1), 0(tngr), wh) + N (i, T, wi (6.5.9)
+N (u(tn), ultn), wa) — N (up ™", 5, w)

——— (8(0(tns1) — 05) —g(0(tn) — 05 7"), W)

271

We choose w;, = 2At (EZ“ — E};) in (6.5.9). By (5.4.43) and (5.4.44), the left
hand side of (6.5.9) becomes

(ol o P 1ol vl PR Lo o S i

2Nt

+2[[V(o™ = i)l +

7|V (B)

‘ 2

0
2At

= = (V(E B, V(E - FY))

49 <En+1 —9E" + En—l ’ Fn+1 _ Fn>

YN <P”+1 — P, div (Br+! - Eg)>

20
Re

—20 (N (ultngs), ultnsn), B = Bp) — M (uf, @, By - Bp))

<s —sm7 div (Br — EZ)>

YN (./\/'(u(tn), u(t,), Bt — 7y — M(u! a7, Bt — Eg))

QAtGT n n— A’n An
— T (8(0(tnn) — 07) — g(0(t) — 6;7), B — By

= Ay + Ay + Ag + Ay + As + Ag + A,
(6.5.10)

Then A;-Ag can be bounded by (5.4.46)- (5.4.63), and the last term is bounded

by
CABGr? [t) CAGr?
R R e
6.5.11
T | @ &) oo
8Re h "1l
Since we have, by Lemma 6.11,
N
Yol —e, < © (A4 h?) (6.5.12)

n=0

plugging (6.5.11) into (5.4.65) and treating by (5.4.66)-(5.4.72) derive (6.5.8). m

272

Lemma 6.14 Let Assumptions 1-9 hold. If Cih? < At < CQh% with constants
Cl; 02 > 0, and Zf
[V (0)]ly < M, (6.5.13)

then we have

N
19 (i =)+ 5 SV (v = v+ v
n=1

N (6.5.14)

At n nll2 s
+ 5o ; |Ep — Ef||) < CAt (A8 + h*F2).
PROOF. We choose wj, = 2A¢ (v — v7) in (6.5.9), where vi*! is the solution

of the discrete Stokes system (5.3.46). Then we have

2((BF - BY) - (BB v)
2N\t

+— <v (E“H - E") LV (v - v;;)>

= 2At <P”+1 — P, div (vt — V2)>
(6.5.15)
—2At (N (u(tps1), a(tngr), vith — vii) — N(up, ot vith — vi))

+2At (N (u(tn), ults), vith = vi) = N(ap ", Gy, vith = vi))

2AtGr
Re?

(8(0(tns+1) —) —g(0(ta) — 05 7"), Vi — vi).

273

By (5.4.76) and (5.4.77), (6.5.15) becomes

IV (it = vy [o = |V (v = v) o+ |7 (virtt = 2vi + v o,

PYAN

n n 2
+ o IIE" =B
2Nt 2Nt PSR
— ﬁ <En+1 _ En’ Fn+1 _ Fn> _ E <(]Z+1 _ Q}T:, div (Eh+1 . Eh)>
2A¢
_E <V(Fn+1 — Fn) y V (VZ+1 — VZ)>

+2AL (P — P div (vt = vi))
=2/t (N (u(tpi1), ultnsr), vith = vi) = N(up, oyt vith — vi)

F2A8 (N (ulta), ultn), Vit = vE) = Mg G5, v = vi))

2AtGr n n n n
T Re? <g(0(tn+1) —0p) —g(0(t,) — 0 1)) Vh+1 - Vh>
=A +As+ As+ As+ As + As + Ar.
(6.5.16)
We already have A;-Ag in (5.4.79)-(5.4.101), so we need to get just
2AtGr n e n n
A7 = — Re? <g ((0(tn+1) —0y) — (0(tn) — 0y 1))) Vh+1 - Vh>
CAtGr, , nll2 CAtGr n ny 112
rz 1€ =L A IVORT =Vl (6.5.17)
CABGr [+ 2
ol
Since, by Lemma 6.11,
Y 2
Dol =2, < O (a8 + h¥), (6.5.18)
n=0
plugging (6.5.18) into (5.4.102) gives (6.5.14). n

Now we find the error of pressure by using all previous results:

274

Lemma 6.15 Let Assumptions 1-9 hold. If Cih? < At < Coh’s with arbitrary

constants C1, Cy > 0, and if

[Vu,(0)[|, < M, (6.5.19)

then we have

N
A |lenttfs < C (At + 1) . (6.5.20)

n=0

PROOF. In view of (6.1.8) in Algorithm 6.1, (6.4.26) can be rewritten by

En+1 — En ") 1 ~.
<T W)~ (e divwn) + g (VB)
n+l _ .n : _ ﬂ __on
<s sy, div wy, Too? (g(0(tns1) — 07), Wi (6.5.21)

—N(u(tns1), ultns1), wa) + N (uf, G5, wh).
By inf-sup Assumption 4, there exists an element z"' € V}, such that

(vt gy = o2 wd) < Hla e 6522

the above two formulas (6.5.21) and (6.5.22) yield
e = (v,)
_ (divatt, et nn+1>
(Y s div)+ (div gt) (6.5.23)
"‘(N (u(tns1), ultnr) 2y ") = N (u, W, 231))
5T (g (Bltner) —), 2

Re?
= A1+A2+A3+A4+A5+A6.

275

Since we have already estimate A;-As in (5.4.109)-(5.4.118), it is enough to get

Gr
A5 = 7 (8 (0ltna) —0h),)

CGTAt tnt1 2 CGT nn2 1 n+1112
< W/tn 10:(2)[lodt + ﬁRe4||€ ||O+ZHeh+ Ho'

(6.5.24)

5.4.109)-(5.4.118) and (6.5.24), we obtain
C

—~ 2
Ho—i_m VEn—{—l

0

By (5
1 n C n
ZHE +1H§ < 52At2HE -

",

SR I
BRe* o B2

5l

tnta CGrAt [+
ot [ol + S [I
t € Jt,

- 1112 - (6.5.25)
IR+ e+ e ||0)

n

Multiplying 4At and summation over n from 0 to N,

N n+1]|2 C x n+1 n||2 CGT n

2D flelo = gopg 2 B - B+ 5342” I
n=0 —

C’AtN+1 .

T (HE

CAtz Rigs! 2 T 2
G [(ot + o)

CAt a1
+B2R62 Z HVE ’

FEE + G + [||0)

(6.5.26)

< C (At +h*).

By Lemmas 6.5, 6.9, and 6.14, we get (6.15). [|

6.6 Numerical Experiments

We present several simulations to illustrate the performance of the Gauge-Uzawa
method with thermal convection. In all examples the fluid moves to buoyancy

forces.

276

o =
1 1
b=3 u=0 6=0 b=—3
00
5—0

Figure 6.1: Initial and Boundary Values of Thermal Driven Cavity

Experiment 1 (Thermal Driven Cavity) Figure 6.1 indicates initial and bound-
ary values in the domain 2 = [0,1]%. The non-dimensional numbers are chosen

to be
1
Ra=10°, Pr=1, Re=1, At=0.0001, h= 5 (6.6.1)

This example was already computed by Gresho, Lee, and Chan [13], and our

results of Figures 6.2-6.6 are quite similar with theirs.

277

Velocity (uma><= 26.408513)

~
TITIIIIIIIITIT
NN v
\’ZZ\II’l
. LT)
- 7 r's

1

Temperature
0 0.2 0.4 0.6 0.8

;- I
[N
'v.;\‘~~<<\\
Y.,4,____;\
Noeomm s e ey
S e e
N T NN

N v

1
Temperature
1
0.8 / //

0 0.2 0.4 0.6 0.8 1

Figure 6.3: Thermal Driven Cavity of Experiment 1 at time=0.01.

Velocity (umax= 90.610615)

Stream line

Temperature

1
0.8
0.
0.
0O 0.2 0.4 0.6 0.8 1

Figure 6.4: Thermal Driven Cavity of Experiment 1 at time=0.025.

o
o

N

N

Velocity (u__ =70.991999)

Stream line max
1
S e e e - - = = =
[foooTToIoood 3
poITIIIIIICINN
. NN
I N N
! !
N b
1 IIIIIIIlIc 2
N s s s s s - o
e e L
Ve e e ——— -,
0
0 1
Pressure Temperature
1 1
0.8 0.8
0.6 0.6 I

0.4 ’

== 0.2
£ % 0 “
6 0.8 1 . X 0.8 1

0 =
0 0.2 0.4 0.

Figure 6.5: Thermal Driven Cavity of Experiment 1 at time=0.1.

279

Velocity (u = 71.031414)

Stream line

\\\\\\\\\\\
\\\\\\\\\\\\

— e e e ————

Temperature

0.8 ‘
0.6 I
0.4 ’

0.2 “

Figure 6.6: Thermal Driven Cavity of Experiment 1 at time=0.2.

280

Experiment 2 (Thermal Driven Cavity) This example is the same as Experiment

1 but with

Re =10*% At=1.

(6.6.2)

These extreme values are chosen to test the stability of the Gauge-Uzawa scheme.

The remaining parameters are

Ra=10°, Pr=1, h=2".

The results are depicted in Figure 6.7 to 6.11.

Stream line

Velocity (u__ = 0.002568)

max

v

e

.............
,,,,,,,,
.....
‘‘‘‘‘‘
......
\\\\\\\\\\\\\
\\\\\\\\\\\\

1

0.8

0.6

0.4

0.2

0

Figure 6.7: Thermal Driven Cavity of Experiment 2 at time=30.

Pressure

Temperature

0.8
0.6
0.4
0.2
0 0.2 0.4 0.6 0.8 1 0

281

0.4

0.6

0.8

(6.6.3)

Velocity (u__ =0.007367)

Stream line max
1
P ST
T
' \\\?iﬁA:::t
' CIIIIy
,,,,,,,,, \s’
N A
4 S
o 22 \\\.,/‘;
LI N, s
VN ol ol e~ ~—
R A
ST I
0
0 1
Pressure Temperature
1
0.8
0.6
0.4
0.2
0
0 0.2 0.4 0.6 0.8 1

Figure 6.8: Thermal Driven Cavity of Experiment 2 at time=100.

Stream line Velocity (umax: 0.009043)

\\\\\

NN - - o

N — e e

[S)
=

Temperature

1
0.8
0.6
0.4
0.2
00 0.2 0.4 0.6 0.8 1

Figure 6.9: Thermal Driven Cavity of Experiment 2 at time=250.

282

Stream line Velocity (u_ = 0.007075)

e e ——— L

Pressure Temperature

Figure 6.10: Thermal Driven Cavity of Experiment 2 at time=1000.

Velocity (u__ =0.007080)

Stream line max’
1
//////////////
f77ooIIoIioooy I
PSIIIIIIIIION
e D0 D DD N
? 1 . &
tal oy L
LI |
N : |
f IZzIIIziic 2
VIIIIIIIIIZZZ
Ve e e
0
0 1
Pressure Temperature
= 1 H
0.8 0.8 ‘
0.6 0.6 I
0.4 0.4

L 02
0 %
0 4 0.6 0.8 1

0.2 0.

_\\&

Figure 6.11: Thermal Driven Cavity of Experiment 2 at time=2000.

283

Experiment 3 (Benard Convection) The initial and boundary conditions are
shown in Figure 6.12 for the domain ©Q = [0,5] x [0,1]. The non-dimensional

numbers are chosen to be
Ra=10% Pr=1, Re=1, (6.6.4)
with discretization parameters
At=001, h=— (6.6.5)
=0.01, h=g. .6.

Figure 6.16 depict the solution towards steady state.

< 5 >
T =0
00 00
_— = = 0: _— =
ial/ 0 u=20 0 by 0
=1

Figure 6.12: Initial and Boundary Values of Benard Example

284

Velocity

Pressure

Temperature

Figure 6.13: The Benard Example at ¢t = 0.05

285

Velocity

Pressure

e ————

e —

Temperature

Figure 6.14: The Benard Example at ¢t = 0.10

286

Velocity

Pressure

Temperature

Figure 6.15: The Benard Example at ¢t = 0.15

287

Velocity

Figure 6.16: Steady State Solution of Benard Example t = 1.0

288

BIBLIOGRAPHY

[1] F. Brezzi and M. Fortin, Mized and Hybrid Finite Element Methods,

Springer-Verlag, (1991).

[2] J.B. Bell, P. Colella, and H.M. Glaz, A second-order projection method for
the incompressible Navier-Stokes equations, J. Comp. Phys., 85 (1989), 257-

283.

[3] G.F. Carey, S.S. Chow and M.K. Seager, Approzimate boundary-flux calcu-
lations, Comput. Meth. Appl. Mech. Eng., 50 (1985), 107-120.

[4] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math.

Comp., 22, (1968) 745-762.

[6] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in

Mathematics, (1988).

[6] W. E and J.-G. Liu, Gauge finite element method for incompressible flows,
Int. J. Num. Meth. Fluids, 34 (2000), 701-710.

[7] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, submit-
ted to J. Comp. Phys., (1996).

[8] W. E and J.-G. Liu, Projection method I: Convergence and numerical bound-

ary layers, STAM J. Numer. Anal., 32 (1995), 1017-1057.

289

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithms

for saddle-point problems, STAM J. Anal., 31, No. 6 (1994), 1645-1661.

L.C. Evans, Partial Differential Equations, GSM 19, American Mathemati-

cal Society, (1999).

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of
Second Order, Second Edition, SCSM 224, Springer-Verlag, (1998).

V. Girault, and P.-A. Raviart, Finite Element Methods for Navier-Stokes

FEquations, Springer-Verlag (1986).

P.M. Gresho, R.L. Lee, and S.T. Chan, Solution of the time-dependent in-
compressible Navier-Stokes and Boussinesq equations Using the Galerkin fi-
nite element method, Springer, Berlin, Lecture Notes in Math., 771 (1980),

203-222.

J.-L. Guermond and L. Quartapelle, On the approximation of the unsteady
Navier-Stokes equations by finite element projection methods, Numer. Math.,

80 (1998), 207-238.

J.-L. Guermond and L. Quartapelle, On stability and convergence of projec-
tion methods based on pressure poison equation, Int. J. Numer. Mech. Fluids,

26 (1998), 1039-1053.

J.G. Heywood and R. Rannacher, Finite element approximation of the non-
stationary Navier-stokes problem. I. reqularity of solutions and second-order
error estimates for spatial discretization, STAM J. Numer. Anal., 19, no.2

(1982), 57-77.

290

[17]

18]

[19]

20]

[21]

[22]

[23]

[24]

[25]

[26]

R.B. Kellogg and J.E. Osborn, A regularity Result for the stokes problems

in a convex polygon, J. Funct. Anal., 21 (1976), 397-431.

J. Kim and Mion, Application of a fractional-step method to incompressible

Navier-Stokes equations, J.Comput. Phys, 59 (1985), 308-323.

O. A. Ladyzenskaya, In integral estimates, convergence, approrimate meth-
ods, and solution in functionals for elliptic operators Vestnik Leningrad Uni-

versity., 13, no. 7 (1958), 60-69.

A 1. Pehlivanov, R.D. Lazarov, G.F. Carey, and S.S. Chow, Superconvergence
analysis of approzimate boundary-fluz calculations, Numer. Math., 63 (1992)
483-501.

A. Prohl, Projection and Quasi-Compressibility Methods for Solving the In-

compressible Navier-Stokes Equations, B.G.Teubner Stuttgart (1997).

A. Prohl, On pressure approximation via projection methods in computa-

tional fluid dynamics, pre-print.

A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite el-

ement toolbox , Manual, 244 p., Preprint 06/2000 Freiburg.

SFB 256, GRAPE GRAphics Programming Environment Manual, Univer-
sitdt Bonn (1995).

J. Shen, On error estimates of projection methods for Navier-Stokes equation:

first order schemes, SIAM J. Numer. Anal., 29 (1992), 57-77.

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis,

Siam CBMS 66, (1995).

291

[27] R. Temam, Sur l’approzimation de la solution des equations de Navier-Stokes
par la methode des pas fractionnaires. II. (French) Arch. Rational Mech.
Anal., 33 (1969), 377-385.

[28] Vidar Thomee, Galerkin Finite Element Methods for Parabolic Problems,

Springer-Verlag, Springer Series in Comp. Math., (1997).

[29] R. Verfurth, A posteriori error estimators or the Stokes equations, Numer.

Math., 55 (1989), 309-325.

[30] C. Wang and J.-G. Liu, Convergence of gauge method for incompressible
flow, Math. Comp., 232 (2000), 1385-1407.

[31] M.F. Wheeler, A priori Ly error estimates for Galerkin approxzimations to
parabolic partial differential equations SIAM J. Numer. Anal., 10 (1973),
723-759.

292

