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Abstract

The 2D g-Navier-Stokes equations has the following form:

0
a—u—vAu+(u-V)u+Vp=f
t
with the continuity equation
V. (gu)=0,

where g is a suitable smooth real-valued function. For the restricted funajjoRoh showed
the existence of the global attractors for the periodic boundary conditions. One note that we
get the 2D Navier—Stokes equations fpr= 1.

Therefore, in this paper we are interested in the behavior of the global attractors of the 2D
g-Navier—Stokes equations as— 1 in the proper sense and will prove that the semiflows,
generated by the projection of the solutions of thblavier—Stokes equations into the solution
space of the Navier—Stokes equations, is robust at the global attractor of the Navier—Stokes
equations with respect tg.

For that, we will use the Robustness theorem developed by Sell and You.
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1. Introduction

In this paper, we study the behavior of solutions of thBlavier—Stokes equations
in spatial dimension 2. These equations are a variation of the standard Navier—Stokes
equations, and they assume the form,

g—l;—vAu+(u-V)u+vp=f in Q, 1)
1 Vg .
“(V.gW)=—-u+V-u=0 in @, (2)
8 8

whereg = g(x1, x2) is a suitable smooth real-valued function defined(oqn x2) € Q
and Q is a suitable bounded domain R?. Notice that if g(x1, xo) = 1, then the Egs.
(1) and @) reduce to the standard Navier—Stokes equations,

g—L;—vAU—I-(UV)U-i—vP =f in Q, (3)
V.u=0 in Q. 4)

Of particular interest in this paper, is the problem where the gradignts small and

g is “close to” 1. In this case, one can view tgeNavier—Stokes equations as a small
perturbation of the standard Navier—Stokes equations. We are interested in comparing
the long-time dynamics of the solution of the two systems.

While the g-Navier—Stokes equations form a meaningful problem in a 3D spatial
regionQ C R3, whereg = g(x1, x2, x3) and(x1, x2, x3) € Q, we are specially interested
in the 2D problem here. The reason for this is that the @Navier—Stokes equations
arise in a natural way in the study of a standard 3D problem, as we show in the next
section. We do not claim that thggNavier—Stokes equations form a model of any fluid
flow. They may, or may not. That they are derived from a standard 3D problem is the
basis for our study.

Before we present the derivation of tigeNavier—Stokes equations, it is convenient
to recall some relevant aspects of the classical theory of the Navier—Stokes equations.
For many years, the Navier—Stokes equations were investigated by many authors and
the existence of the attractors for 2D Navier—Stokes equations was first proved by
Ladyzhenskay43] and independently by Foias and Tem@h The finite-dimensional
property of the global attractor for general dissipative equations was first proved by
Mallet—Paret[5] and Mafié[6]. For the analysis on the Navier—Stokes equations, one
can refer to[1,4,8,9] specially[10] for the periodic boundary conditions.

In this paper, we will have the following organization. In Section 2, we will present
the derivation of 2Dg-Navier—Stokes equations from 3D Navier—Stokes equations with-
out the proofs (see RofY] for the details). For the boundary conditions, we will con-
sider the periodic boundary conditions, while we can get same results for the Dirichlet
boundary conditions on the smooth bounded domain. In Section 3, we will present
the mathematical spaces and the preliminary results ofjiNavier—Stokes equations.
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Finally, in Section 4 we will prove the robustness of the global attractors with respect
to the functiong in the proper space at = 1.

2. Derivation of the 2D g-Navier—Stokes equations

Let Q, = Q> x [0, g1, where, is a bounded region in the plane agd g(x1, x2)
is a smooth function defined of2; with 0 < m<g(x1, x2) <M, for (x1,x2) € Qo.
Now, we consider the 3D Navier—Stokes equations,

oU

-~

—VAU+ U - VYU +VD =F in Q,

V.-U=0 in &
with the boundary condition

U-n=0 on 0wops U dhottom<2y, 5)
where
OtopQ2g = {(x1, x2, x3) € Qy : x3 = g(x1, x2)},
Obottom@2g = {(x1, x2, x3) € 2, : x3 =0}.

The lateral boundary condition correspondingd®, does not affect to the derivation
of the 2D g-Navier—Stokes equations. But, in this paper we will consider the periodic

boundary conditions to study the 2pNavier—Stokes equations.
Now we defineu = (uz, up) as

1 g(x1,x2)
U; = U;(x1, x2) = —/ U; (x1, x2, x3) dx3
g(x1,x2) Jo

for i = 1,2 and we get the following proposition.

Proposition 1. Assume thaV - U =0 in Q, and that(5) is valid. Then one has

d(gu1) N d(guz) _

\ZE =
2- (W) Ox1 0x2

Ve Utg(Va-u)=0 in Q.
where V, = (8‘—;1 %2) and Vg = (5_g 0_g)_

dx1’ Oxp

Proof. See Roh[7] for the details. [J
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Now, we consider the special case like

U(x1, x2, x3) = (U1(x1, x2), U2(x1, x2), Uz(x1, x2, x3)).

By the previous proposition, fan = (U1, U2), one hasV - (gu) = 0 andu satisfies the
2D g-Navier—Stokes equations. Moreover, we have

ou ou
U3s(x1, X2, x3) = —x3 (—1 + —2> = —x3(V2-U),

when 6) and V- U = 0 in Q, are valid. This is the basis for our study of the 2D
g-Navier—Stokes equations.

3. Preliminaries

In this section, we will present the results of théNavier—Stokes equations one can
find in Roh [7]. Here, we consider the periodic boundary conditions on the domain
Q = (0,1) x (0,1) and assumau, p and the first derivatives ofi to be spatially
periodic, i.e.,

U(r+ 1, x2) = U(x1, x2) = U(xg, x2 + 1),  (x1,x2) € R?

and similarly forp and %
X
For the functiong, throughout this paper, we assume that

1. gx) € cggr(s)) and
2. 0<m<gx,y)<M for all (x,y) € Q.
Note that the constant functiogy= 1 is also included for our functiog.

Now, we define the Hilbert spade?(Q, g) = L%(Q, R?, g), which is the spacé?(Q)
with the scalar product and the norm given by

<u,v>g=fg<u-v> gdx and | u 2= (u u,.

wherex = (x1, x). Similarly, we define the spacE(Q, g) which is the spacéi1(Q)
with the norm by

2 3
U ll g0, = {w, ubg + Y _(Diu, D,~u>g} :
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where% = D;u. Specially, for the constant function= 1, we denote that

fTulle=1Mull, Tullgrey=I1ulgyg-
One can see easily that the nofw || is equivalent to the nornj u ||, as well as the
norm || u || g1 is equivalent to the nornff u || y1q -
Now, we consider the following closed subspaces.8{®, g):

H=CLj2qg{u € CoolQ) : V-gu=0}

Then, we define the orthogonal projectidh: L3.(2. g) — H and we can geQ =
H' as

Q =CL12g){V: ¢ € Cpo(Q. R)},

which do not depend on the functian }

Therefore, for the givewv Lger(Q, g), we can findu € H and Vp € Q such that
V=UuU+Vp.

But, for our problem, we are interested in the dynamics on the following spaces:

H, = CLLz(Q,g){ueC,‘;gr(Q) : V.gu=0, /udx:o},
Q
Ve = {uengr(Q,g) ©V.gu=0, /udx:O},
Q

where H, is endowed with the scalar product and the nornLfi<, ), andV, is the
spaces with the scalar product and the norm given by

Wy, = [ (D) gaxandu = ©®)

wherex = (x1, x2).
Also, for a givenv e L%er(Q, g), one obtains

k 1
Vv=u+-+Vp forue H,, Vpeo, sz/vdx @)

and specially forg =1 one has

v=u+k+Vp forue H, VpeoQ, k:/vdx. (8)
Q
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As a result, we can define the orthogonal projecti®n: L%er(Q, g) — H,, which
is similar to the Lerary projection, aB,v = u.
Now, throughout this paper we define thd.aplacianA, by

1 1
—Agu=——(V-gV)u=—-Au— —(Vg - V)u,
8 8

which is a perturbation of~Au. Then, forv =1, (1) can be written as

Z—l;—Agu+E(Vg-V)qu(u-V)quVp:f in Q. 9)
8

Thus, by taking the orthogonal projectiaf, into (9), one obtains

du
E+Agu+Bg(u,u)=q on H,, (20)
where Ay u = Po(—Agu), Be(u, U) = Po(u-V)U, g = Pylf —g%(Vg-V)u]. In this paper,

we will call the linear operator,u = Py(—A.u) as theg-Stokes operator. Also, we
obtain the following proposition for thg-Stokes operator.

Proposition 2. For the g-Stokes operatad,, the followings hold
(i) The g-Stokes operatot, is a positive, self-adjoint operator with compact inverse

where the domain oft,, D(A,) = V, N H*(2, g).
(if) There exist countable eigenvalues Af satisfying

0<Mg)SM1<la<A3< -,

wherel(g) = # and /1 is the smallest eigenvalue df,. In addition, there exist
the corresponding collection of eigenfunctides, e, es, ...} forms an orthonormal
basis for H,.

Then, for the fractional power of thg-Stokes operator, one can obtain same results
as the one in Sell and Yo[8]. Since the operatoA, is self-adjoint one can have

1 1
(Agu,u)g = (Afu, AZu), forue D(Ay) =V, N H%(Q, g) (11)

and since the orthogonal projectiah is self-adjoint operator, by using integration by
parts we have

<A§u, A§u>g = (AgU, U), = <Pg [—E(V : gV)U} ; U> = / (Vu - Vugdx,
8 g Q
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which implies by 6) that

1 2
IAZull, =l VullZ=1lulf for ueV, (12)

In addition, foru € D(Ag) and 0<a <1, one specially obtains
ANUIE<I AU and U |20, <O | AUl (13)

for some positiveS = 5(0(, /1), where /1 is the first eigenvalue of,.
Next, we denote the bilinear operatsy, (u, v) = P,(u- V)v and the trilinear form

2
be(U,v,wW) = Z /Qui(DiVj)ngdX,
ij=1

0

whereu, v, w lie in appropriate subspaces ﬂﬁer(Q, g) and D; = =

Then, one obtains

2 2
bg(U,v,w) = Z /Qui(D,-vj)wjgdxz Z /qu,»(D,-vj)wjdx

i,j=1 i,j=1

2 2
—Z/;Di(gui)Vjodx— Z/quivj(D,'Wj)dx

i,j=1 i,j=1

2
— Z /quivj(D,-Wj)dx = —bg(U,w,V)

i,j=1
for sufficient smooth functionsi, v,w € H, and hencebg(u,v,w) = —b,(U,w, V)
which impliesb, (u, v, v) = 0. For the nonlinear term we obtained same results as the
one in Section 6.1.2 of Sell and Yd8].

Proposition 3. Let o;,i = 1, 2, 3 be nonnegative real numbers that satisfy
a1 +op o3>l

and the vector(a1, a2, a3) is not equal to(1, 0, 0), nor (0, 1, 0), nor (0,0, 1). Then
there are positive constants = v;(g, a1, o2, a3, £) for i =1, 2 such that

16U, V. W<y U lgoa LV Il e | Wl s,
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whereu € H*, v € H*2t1 andw € H*3, and

(xp +1)

%3
1b(u, v, W)| <72 IIA UII I Ag = VI I AZ W,

for all ue Vi, ve V2™ andw e V.

Now, we are in the position to see the existence of the solutions ofi#Navier—
Stokes equations. For the proofs, Rjgf followed the presentation given by Sell and
You [8].

Proposition 4. Let f € L>(0, oo; L2(2, g)) be given. Then for everyg € H, there
is precisely one weak solutiofof class LH u = u(z) on [0, o) of (10), satisfying
u(0) = up. Moreover one hasiu(t) € C[0, co; Hy). Also, let u = u(r) be any weak
solution of(10) on [0, oo) with initial condition u(0) = ug € H,. Then for eachg > 0,
V(t) = u(r+1p) is a strong solution of10) on [0, co) with initial conditionv(0) = u(zp)
and D,u € L2 (0, oo; Hy).

In next theorem, we will see uniqueness and continuity of the solution with respect
of the dataug, f.

Proposition 5. Let f; € L>[0, co; L%(Q, g)) be given andd;, i = 1,...,5, are con-
stants. Fori = 1, 2, let u; = u;(z) denote two solutions fL0) in Proposition4 defined
on the interval[0, co), with data (u; (0), f;). We also denote,(r), p,(r) and p5(r) are
monotong nondecreasing functions defined oK < oo. Then for u;(0) € Hg, one
has

_1 2
lur() — uz@) [5<e”® (| us(0) — ua(0) |15+ 2]l Az 2(Fr—f2) o 1)

and for u; (0) € V,, one has

1 2 1 2
I'Ag (u1(®) — u20) I, <eP20 (|| AZ (u1(0) — u2(0)) g + 2l f1 —f2 I150)-

Here, we denote

r 52 g2
py(6) = /O 2<d1|| A2us(s) ||g+%) ds

and

| v g||2 dy, % 2
po(t) = / ( > || Agui(s) 12 + 2l Aguz(s) I, | ds
0 m 1

/“1

where /1 is the first eigenvalue oA,.



460 J. Roh / J. Differential Equations 211 (2005) 452—-484

Remark 1. Set

—oa(g) = A= 5| Vg 12 o2 = o2(g) = — (14)
= o1(g) = 2l V8 I a2 =o2(8) = 5.

where 4 is the first eigenvalue oA, and

| Vg lloo = sup [Vg(x,y)l
(x,y)eQ

Then, by Propositior2, we havei; > 4’};’". So, if || Vg ||§o < "’j}z then

P 2 2 >47t2m 2 P 212m
ol = A1 — ﬁ” Vg ”oo/_ - W” Vg ”oo >
and
2 M?

g = —— < ———.
Ao Antm?

Therefore, if|| Vg ||§<> < % then we can choosei, a2 only depend omm, M.
Then, for small enoughf Vg ||, i.€., g “close” to 1, in the following proposition
we see the dissipativity of the solutions in the spaggs V, and D(A,).

Proposition 6. We assume thdt Vg |2, < % andf € L2(Q, g). Then the following
hold:

1. For ug € Hy, one has
lu@) 115<e™ | uo 5 + o2l 112 (15)
and

m rood 2 5 20t —11)
(1-55) /t O R

1

112

for 0<r <t < o0.
2. For ug € V, then there exist constants, = ri(m, M, ), ro = ra(m, M,f) and Ly
= Li(m, M, f)(L, does not depend ong) such that fors >0,

1 2 1 2
| AZU@) 1, <ra@+ 1) AZuo | )e ™" + Ly, (16)
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In addition, if up € D(Ag) and the forcing ternf € V, then there exists constants
r3 =r3(m, M,f) and L, = Lao(m, M, f)(L2 does not depend ong) such that

I Agun) IZ<ra+ || AgUo I5)e™ + Ly fort >0, (17)

As a result of the PropositioB, we are in the position to prove the existence of
the global attractors for the semiflows generated by the weak and strong solutions.
Here, we assume that the forcing tefnis a time-independent function. We will let
ow(t, Ug) = Sy(H)up denoted the semiflows ofl, generated by a weak solution on
with the data(ug, ) whereup € H, andf € L2(Q, g). Likewise, leta(t, uo) = Ss()Uo
denote the semiflows ol, generated by a strong solution with the datg, f), where
Uo € V; andf e L%(Q, g).

Proposition 7. Let f € L2(Q,g) and we assume that Vg ||§<> < ’”L”Z. Then for
Up € H,, ou(t,up) = Sy (t)up is a semiflow onH, which is point dissipative and
compact fort > 0. Alsg, there exists a global attractod,, for S, () and the semiflow
S, (1) is robust at.A,, for everyf € L%(Q, g).

Likewise forug € Vg, o,4(t,ug) = Ss(t)up is a semiflow onV, which is point
dissipative and compact far> 0. Furthermore there exists a global attractad, for
Ss(t) and the semiflows;(r) is robust at.As for everyf e L?%(Q, g). In addition, we

note that A, = A,, for fixedf € L%(Q, g).

4. Robustness of the global attractors

In this section, we will study the behavior of the global attractors of gh¢avier—
Stokes equations as— 1 in the proper sense.

Before we do that we will first review useful definitions and propositions developed
in Section 2.3 of Sell and Yo{8]. Then, we will describe two main theorems of this
paper. In Section 4.1, we prove useful lemmas for main theorems. In Section 4.2, we
will prove the first main theorem that the semiflows generated by the weak solutions
of the g-Navier-Stokes equations is robust at the global attractor of the semiflows
generated by the weak solutions of the Navier—Stokes equations. In Section 4.3, we
will prove the results of Section 4.2 for the strong solutions.

Definition 1. Let A4 be a metric space. We will say théj, for A € A, is acontinuous
family of semiflowson M, provided thatS;(r)u = o(4,u,t), and the mappings :
A x M x [0,00) - M satisfies the following conditions:
1. the restriction mapping : A x M x (0, c0) — M is continuous.
2. for eachl € A, the mappingS;(¢) is a semiflow onM.

We will say that the semiflowy(7) is imbedded into a continuous famity semiflows
S;, for 2 € A, provided that there is ag € A such that

S;ou = So(t)u foru e M andt e [0, c0).
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Definition 2. Let Ag be an attractor for a given semiflofiy(z) on the Banach space
W. Let So(t) be imbedded into a continuous family of semiflows(z), where/ € A
and S;, (1) = So(¢). We will say that the familysS; (¢) is robustat Ag, with respect to
A at 1 = Ao, provided that, for every > 0, there is a neighborhoo® = O (¢) of Ao
in A such that for eachi € O, the semiflowS,(r) has an attractod; and

A; C N;(Ag) forall 1€ O,
where
Ne(Ag) ={ue W : disty(u, Apg) <&}

Definition 3. Let ¢ be a semiflow onM c W. We will say thats is asymptotically
compacton a setB C M, if for any sequences, € B andr, — oo, there exist
subsequences, which we relabel @s and 1,, with the property that the limiv =
lim S(z,)u, exist andv € M.

Proposition 8. Let ¢ be a semiflow o C W. Let A be a nonemptycompact set in
M, and assume tha#l attract a nonempty set B uniformly. Thenis asymptotically
compact on B

Proposition 9 (Robustness theorgmLet So(z) be a semiflow on the Banach space W
and let Ag be an attractor forSp(¢). We also let/; be any fixedbounded neighborhood
of Ap and letSp(¢) be imbedded into any continuous family(z), where each semiflow
S;(r), for 1 € A, is asymptotically compact ofy;. Then the familyS;(¢) is robust at
Ao.

Let us go back to our problem. We defiég (g, v,t) on Hy by
6w(g,v, t) = Plaw(g’ ngv t)v

whereao, (g, P,Vv, t) is a semiflow on the spacH, generated by the weak solutions of
Eq. (10) with the initial condition P,v. We will see later that, (g, v, 1) is a semiflow
on Hj. Then, we prove that the family of the semiflows (g, v, r) with respect tog

is robust at the global attractor of the semifléwy (1, v, ) = o, (1, Vv, 1).

Theorem I. Letf € L2(Q) and g € 4 C W2°°(Q), where 4 is given in Definition
4. Then for every g € A, 6,(g,v,t) has a global attractor and the family of the
semiflows with respect to, ¢, (g, v, t), is robust at the global attractor of the semiflow
ow(l, Vv, 1).

Also, we can define the semiflow oy by

05(g,V, 1) = P1os(g, Pgv, 1),
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where o, (g, Pyv,t) is a semiflow on the spac¥, generated by the strong solutions
of Eq. (L0) with the initial condition P,v. And we get the following theorem, due to
Robustness theorem.

Theorem II. Letf € L2(Q) and g € A € W2°°(Q), where A is given in Definition
4. Then for every g € A, 64(g,V,t) has a global attractor and the family of the

semiflows with respect to, ¢, (g, Vv, 1), is robust at the global attractor of the semiflow
os(1,v,1).

4.1. Useful lemmas

In this section, one should recall that we denoteAby Vi, P1, A; instead ofH,,
V,, Py, A, for the constant functiorg = 1.

By using the fact that the pressure sp&galoes not depend on the functignwe
can have the following.

Lemma 1. Assume thaVp € Q and p € H3(Q). Then we have

d d
Py [E(Vp(t))] = EPg(Vp(t)) =0,
Pg[=A(Vp(1))] = Pg[V(=Ap(1))] =0,

1
Pg[(Vp(1) - V)Vp(1)] = P, [V (E(VP(I) : Vp(t)))} =0.

One should note that Lemmhalso holds for the constant functign= 1.

Lemma 2. For everyus, U € H,, if Piuy = Piup thenu; = up. Alsg for vy, vo €
Hy, if Pgvi = PgVvp thenvy = vo. In other words PPy (v) = v, for v e Hp, and
Py P1(u) =u, for u e H,.

Proof. Assume thatP1u; = P1up. Then, by 8) there existVp; € Q, fori =1, 2, such
thatu; = P1u; + Vp;, becausek = fQ u; dx = 0. So, we haval; —uz = V(p1 — p2).
But uy —uz € H, and V(p1 — p2) € Hgi. Therefore,u; — uz = 0. Similarly by using
(7) one can prove the others[]

For the periodic boundary condition we consider the pressure pgrnwith [, p(x)
dx = 0. Therefore, for the smooth enough functipix) one obtains

472 | V(p) I2< 1 Ap 117 and c1 || p llgz<I Ap I<c2 |l p 2 (18)
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for some constants;, i = 1,2. Then, as a corollary of the previous lemma we can
obtain the following.

Corollary 1. Assume thati e H, with
u=v + Vp forveH, VpeOQ. (29)
Then there exist constants = c3(m, M) and c4 = c4(m, M) such that
APl < csllVegllllull, NI pllgz < call Vgl ITUll (20)
In addition, we havecs = c5(m, M) and cg = cg(m, M) such that

APl < s Vg lleol VI TP lH2g < c6llVElle VI (21)

Proof. By taking the divergenc& - to the both sides of1©), one obtains

25 u=—Ap (22)
8

and one can easily ge2Q).
Next, by using Lemm& we have thatP,v = u which lead to

1 1 v M
[u |I<ﬁll u IIgéﬁll v IIgSWII v

so that one can obtain21). [

Remark 2. By (22), for u € H*(Q), one has a constanly = do(m, M) such that
I P llgzr2<d0 || & llwerrocll U [l o

Lemma 3. We assume thafgzl,dx = 1. Then for u € L%(Q) we have

Kk
P1Pyu= Piu— Py (—) : (23)
3

wherek = [, udx. As a result PP;u = Piu if [Hudx =0.
Furthermore for u € L2(Q) andw € H; we have

[(PLPu, W)| < [(U, W)| +

1_
T8 lo ey jwy, (24)
m
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Proof. By (7), for everyu € L?(Q) = L?(Q, g) there existv € H, and Vg € Q such
that

k
u=v+ —+ Vg, Wherek=/udx,
8 Q

which implies P,u = v. Since P1(Vq) = 0 and the projectiorPy is linear operator we

get 23).
Since (k,w) = 0 for w € H1 and the projectionP; is symmetric we have

k k
[(PLPu,w)| = [(Pru,w)| + ‘<P1 (E) W>‘ = [{u, w)| + ‘<§,W>‘
k 1
= I(u,w>|+’<——k,W>'=|<u,W>|+‘/(——1)k~wdx
g Q8
1
< |(U’W>|+H§_1H KA w

which implies @4). O
Remark 3. From 23) we can have the following instead a24),
1
[{P1Pgu, W)| < [{u, w)| + n—1|| KA Ihw - (25)

In fact, in this paper we need and will use inequali®p)(to simplify the calculations.

In next lemma, we will see the relationship between two spdégsfor different
8is i = 1, 2.

Lemma 4. We assume thatVg|2, < # We also letu; € H,, with
U=V, + Vp; forvie H, Vp;ieQ (26)
for i =1,2 and w = v1 — vo. Then we have positive constaptsuch that

Vg1 Vg
nllpr—p2llge<||— — ——
81 82

Fw il (27)

oo

Vg2
o] 22
82

o0

wheren = c1 (1— %) and ¢ is given in(18).
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Proof. Sincev; € Hj, by taking V both sides in Eq.26) one obtains

Vg1 Vgo
T8 0y — 282wy = —A(p1 — po). (28)
81 82

Then, by using the fact
fur—uz I<lvi=vall+1V(pr—p2) I=1WI+I V(p1—p2) |,

one has from 18) and @8) that

Va1 Vg2
||A(P1—P2)||—H 1——-U2
Vg1 Vgo \Y 2 Vgo
<[22 _g H 82w - 22y,
81 82
Vg1 Vg Vg2
< ||l——-— lus | + ||— ur —uz |
Vg1 Vg Vg2
< || -— lug I+ ||— MTwili+1vipr—p2 )
Vg1 Vg Vg2 1
<|l—=———=| luwl+ ||[—| AW+ =IAlpr—rpr2 ),
81 82 o0 82 00 27'C

which implies

| Vgz Il Vg1 Vg
(1——"0 | A(pr— p2) I <||—— — —

> hw .
m 81 82

Vg2
luy | + H—

o0

Thus, by (8) one obtainsZ7). O

Next, we want to see the relationship between the norms in the spicesid H;

1
as well as in the spacdg, and V1. Before we do next lemma we recall thatdju ||g
= || Vu ||, and for the case of the constant functigr= 1, one has that fov € V1,

1
2nf| v < VV I = AV
and forv € D(A1),

AV = P1(—Av) = —Av.
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Lemma 5. We letu € H, with
u=v+Vp for ve H, Vpe .

Then the followings hold
1. One has

% Tulz<v ||2<% lu 2.
2. For u e V,, we have
u=v + Vp, veV;, VpeQ
and

| Vu 2= Vv |2+ V(Vp) |12

In addition, if [Vg|2, < ’”;4“2 then one has
% 2 % 2 1 % 2
Lol Agull,<IlAzv SE I Agull,,
where
472
hh=h(g) =

M (42 +c§l Ve 13
3. For u € D(A,), we have

u=v+Vp, veD(A1), Vpe.
then one has

In addition, if [Vg|2, < 2%

2 2 2
l2 |l Agu llg < Il Aav I7<U3 || Agu I,
where

An*m?

l2=12(g) = 5
M (2n2m + 27|| Vg |lo + csll Vg 1I1%)

467

(29)

(30)

(31)

(32)

(33)

(34)

(39)
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and

(mJ75 +21 Vg 1.2

3,8
m32]

I3=13(g) =
47 is the smallest eigenvalue df;.

Proof. One can easily get30). To get 1), we takeV- into (29) and we have-Ap =
% -u. So, for givenu € V, = HX(Q, g) N H,, one obtainsp € H3(2) which implies
v e V1(Q) = HY(Q) N Hy. Also, by integration by parts, we have

(Vv, V(Vp)):/ VV~V(Vp)dX=/V-V(Ap)dX=O.
Q Q

Thus, by 81), one obtains Eq.32),
| VU | = (VV, VW) + (V(Vp), V(Vp)) = || VV |2+ || V(Vp) |12,
which implies

2 2

1 1 1 1
2 2 2
AV I =1 Vv <] Vu | SovVul =i Agu |l

¢
Moreover, one has from2(Q) that

VUl = 11V 2+ 1 VVP) 12OV 241 p D52,

2, 2 2 2 cgll Vg I1% 2
S IV 4+l Ve s TV IS 1+T | Vv |7,

which complete the proof of3@). Similar to 31) one can obtain34). To prove 85)
one take—A to the both sides 0f34) to get

—Av = —Au + A(Vp).

Then, since—Av € Hj;, one has from Lemm& that P1P,(—Av) = —Av. So, by
Lemmal, one has

I Azv |l

I —AV || = || PLPg(=AV) <]l Pg(=AV) || = || Py(—Au+A(Vp)) |

e (5 5)3)

I Pg(—Au) || = ‘




J. Roh / J. Differential Equations 211 (2005) 452-484 469

1 Vg
< — ||P(AU)||+‘ <<—-V))
ﬁ( g g
< ! I Agull, + -V
1 Vg |
< ﬁ(”A = ———| Vu ||g>
1 2| Vg lloo
< T | Agu |Ig+—;gll Agu |,
‘1
1 ZIVgloo
= — | Agu |,
G\ )

which implies the right-hand side o8%). To prove the left inequality of35) we take
—A, to the both sides of34) to get

—Agu = —Av — A (Vp). (36)

One should recal-Agv = —Av — (% . V) v. So, one has from the factiv = —Av
that

Vg I Vg Il
[ =Agv Il < Il —Av II+H<?~V)V < I-Av+2 e = Vv
\Y% \%
< (1+ w> | —Av | = <1+ w) | AV ||,
m m
which implies
I Vgl
[ =Agv Il < <1+ | || Ayv |. (37)
m

Then, one has from Lemma that

\Y v
Py(—Ag(Vp)) = Po[—A(Vp)] + Py [(f . V) Vp] =P, [(f . V) Vp:| . (38)
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Hence, one has fron3g) that

Il Pg(_Ag(vp)) ”g < '

(3 ) )

Ve 2 M || Ve |
Vi H(?V> VPH<T°° I 7 2o

8

Then, by 21), one obtains

2 VM || Vg |l _2c6 VM | Vg I3,
m m

Il Pg(=Ag(VP)) ll, < I P 2

v,
which implies

cev/M || Vg 1%

A . 39
sl Aw | (39)

Il Pg(=Ag(VP)) I, <
Therefore, by 86), (37) and @9), one has

| Agul,

I Pe(=Agu) I, < Il Pg(=AgV) I, + | Pg(=Ag(VP)) I,

| AV I, + 1| Pe(—Ag(Vp)) Il

N

< VM| =AV 1|+ 1| Po(=Ag(Vp)) I,

v cev'M || Vg |2
< VM <1+ w) ) A g+ SYHIVE Ny,
m 2nem

which complete the proof of the left inequality c35). O

Remark 4. Since | Vg ||§o < m;;@ one can obtairy, I, andl3 which only depend

onmandM but not| Vg |-

4.2. Proof of Theorem |

First, we define new setl as the following:
pefinition 4. Let us define the setl with the metric inherited fronW 1> (Q) asg € A
li. g(x) € Coe(R) and fgzl,dx =1with0<m<g(x,y)<M, forall (x,y) € Q.

3.2
2. |l g ”%vlm < "= and | g lly2e < Mo for some constanMo.
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Note that in Definition4, the constant functiog = 1 belong to the se#t and the
condition |, % dx =1 is to simplify the calculations.
We defined, (g, Vv, t) on Hy by

ow(g,V, 1) = Proy(g, PgVv, 1),

whereaoy, (g, P,V, 1) is a semiflow on the spacl, generated by weak solutions of the
Eq. (10) with the initial condition P,u. Then,d,(g, Vv, t) is a semiflow onH;.

Lemma 6. Let f € L?(Q) be a time-independent function. Thép(g, v, 1) is a semi-
flow on Hi, for any fixedg € A.

Proof. Sinceady (g, P,v,t) is a semiflow onH,, one has by Lemma that
G (g, V, 0) = P1(0y,(g, PeV,0)) = P1(PgV) =V
for all v e Hy and that fors, >0,

6w(g’ 5w(gaV, S)’ t) = Pl[aw(ga PgPl(O'w(gv ngv S))a t)]
= Pl[gw(g, Gw(ga nga S), t)] = Pl[Uw(g, ngas + t)] = &w(gavas +t)

Next, we have from§) that

| (g, V1, 1) — Gu(g, V2. 1) |2 = | Proy(g, PeVi. 1) — P1ay (g, Peva. 1) |2

= ” Pl[aw(gs ngl9 t) - Gw(gs PgV27 t)] ”2< ” Gw(gs nglv t) - Gw(gs PgV27 t) ”2

1 2 1 p1(1) 2
< Z” Oy (g, PoV1, 1) — 0y (g, PyVa, 1) ”ggn_le B Pgvy — PgV2 ”g
1 M
< =) vy — vz [2< =M vy — vy |13,
m m
which implies the continuity with respect g for fixed ¢ > 0. Also, one has

” &w(gvvv tl) - &w(gvvv t2) ”2 = ” Plo-w(gv ngv tl) - Plo-w(gv ngv t2) ”2

1

Now, sincesy, (g, P,V, t) is a semiflow onH,, a,,(g, P,V, 1) is continuous with respect
to t. Therefore,s,, (g, P,V, t) is continuous with respect to [
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Lemma 7. Assume thatz € A and the forcing termf € L?(Q) be a time indepen-
dent function. Letu(s) be a weak solution of the Eq10) with the initial condition
P,ug, whereug € H;. Then for any 1o > 0, there existéy = 61(uo, to, m, M), d2 =
02(Uo, to, m, M), d3 = d3(Up, t0, m, M) which do not depend off Vg ||, such that

1. | Pru) I, [lu(@) [lg<d1 for all 0 <<t < oo,
1 1
2. If up e Vy then|| A7 Pru(®) II, Il AZu(r) ||g<52 for all 0 < o<t < oo.
3. If ugp € D(Ay) then || ArPu) |, |l Agu(r) ||g<(33 for all 0 < o<1 < 0.

Proof. One can obtaird; by (15) and @0), d» by (16) and @33). One can also geis
by (17) and @5). O

Now, we want to show that the semiflody, (g, P,Vv, t) is continuous with respect
to g.

Lemma 8. Let the forcing ternf € L?(Q) be a time-independent function wiybf dx
= 0. Then the semiflows

Gw(g,V,1): A x Hy x (0,00) = Hy
is continuous.
Proof. Let vo € H; andg; € 4, fori = 1, 2. Also, we denote by; € H,, for the weak
solution of Eq. {0) with the initial condition P, vo. Then, for the solutioru; € Hy,,
we can rewrite by
u(t) =vi(t) + Vpi(t), Vpi(t) e Q, V()€ Hi.

Sinceu;(¢) is a strong solution of Eq.10) for t > > 0, one has from34) u; () €
D(Ap), Vi(t) € D(A1) and p; (1) € H3(Q) for 1 >19 > 0. Also, since

/(v,--V)vidx=/(vi-V)Vp,-dX:/de:O,
Q Q Q

we have
P1Po(Vi - V)V, = P1(V; - V)V;,  P1P,(V; - V)Vp; = P1(v; - V)Vp;, P1P,f = Pif.
Thus, by the Eqg.%), Lemmasl and 3 we have

dv;
d_tl + AV + Pr(v; - V)V + P1Py(Vp; - V)V; + P1(V; - V)Vp; = Pif (40)

fori =1,2 andr >ty > O.
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We denote byw = v; — v, and get
dw
dt

+ Pi(W-V)Vp1+ Pi(v2- V)V(p1 — p2)

+ P1P;(V(p1— p2) - VIVi+ P1Py(Vpo- V)W =0 (42)

+ AW + P1(v1 - V)W + P1(W - V)V2

for t >10 > 0. Then, by taking the scalar product withto both sides of41) we have

1d 12

S IWIE+IAfw|

SHW - V)V2, W)| + (W - V)V p1, W)| + [{(V2 - V)V(p1 — p2), W)
+{PLPy(V(p1 — p2) - VIV1, W)| + [(P1Py(V p2 - V)W, W)

= |I|+ 11|+ |III|+|IV]|+|V] (42)

for t >t > 0. Now by Lemma7, (12), the Sobolev imbedding inequality and the
Young inequality we obtain

] = KW-V)vo, W2 [w ] | VW [ || Vvz ||

10 a3 3 2 2
< gl Afw || +16] Afva || [[w |

1 2
< Bl AW +erllw 2 (43)

for some positive constants = c¢7(tg, Vo, m, M). Sinceg € A, by (12), (20), Lemma
7, the Sobolev imbedding inequality and the Young inequality we have

I = [((W-V)Vpr,W)IS2 W[ [| VW | [| p1 Il 52

1 2
1 2 2 2 2 2
< gl Afw |+ 16cz]l Vg IS0 ug 1191 w |

1 2
< A Ajw sl Ve % T w?
1 3 2 2
< HAZw | 43wl (44)

for some positive constant® = ¢s(ro, Vo, m, M) and cg = cg(to, Vo, m, M).
Now, by 5) we obtain

1
IVI=[{P1P(Vp2 - V)W, W)| = [{(Vp2- V)W, W) + | KA Ihwel (45)

wherek = [,(Vp2 - V)wdx.
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Then, by the Sobolev imbedding inequalit20f and Lemma7, we have
1 3
H(Vp2- VYW, W)| < | Vp2 lipga | VW T W [[a<Il p2 g2 T W [12]] VW |2

1 3
S 4eall Vg lloo Iug I Tw 2] V|2

1 2
< A AW +eoll Ve 1% 1w (46)

for some constantg = cg(1o, Vo, m, M).
Since, by using the integration by part20( and Lemma7, we can get

1 1
Tk < = /(v[az«V)wdx
m m | JQ

1
<— ‘ f (Ap2)w dx
m\|JQ

1 cq
< = Ap2 [l 1W< =1 Vg llocll Ug I I Wi
m m
< c1oll Vg llooll W I (47)
for some constantig = c10(fo, Vo, m, M).
Hence, by 45)—(47) we obtain

1 2
VI < &1 AZW || + (coll Vg 113 + c10ll Vg lls) | W II?

1 2
< SN AW | + é1oll W II? (48)

for some constanfig = ¢10(fo, Vo, m, M), becausegs € A.
Next, Sinceg € A one can get by Lemmd, (12), (27) and the Young inequality
that

1T = [{(v2- V)V(p1 — p2), W)|

1.1 2 13 2
Al va 12l Agve Il || p1— p2 lg2ll WII2] Afw ||

<
ro 32 1
< el pr—p2 g2l WIZ| AZwW I <caall p1— p2 g2l AZw |
c11 (||Vg1 Vg Vg2 1
<—(‘——— lug ||+ ||—= ||w|| | AZw |
n 81 82 |loo
1 i ng
<—||Aw|| +c12 ‘ ||w||2
4 g1
1 2 Vg Veglf?
< ghAf B | enn|| 8 V82w (49)
81 82 |lso

for some constants; = ¢;(tg, Vo, m, M) i = 11, 12,13, 14.
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By (25) we have

[IV| = [{PLPy(V(p1— p2) - V)V1, W)|

1
< K(V(p1— p2) - V)V, wy| + Z” K hwl, (50)
wherek = fQ(V(pl — p2) - V)vidx. Similar to [I1I| we can obtain

{(V(p1— p2) - V)V1, W)]

1 1
<4l p1—p2 llpg2ll Afva Il Afw |

1 2

Ver Vel
—|| AIW | +ec15

81 82

+ c16ll W |2 (51)

o0

for some constants; = c;(tg, Vo, m, M), i = 15,16, because < A.
Also, we have from the integration by part7( and Lemma7 that

Ikl = '/Q(V(pl —p2) - V)vidXx| = ‘/Q(A(m — p2))V1dX
< N A(pr—=p2) I IV Il pr— p2 g2l va |l
01 (|| Ver Vg2 Vg
<—('—g——g S+ |22 wi). (52)
n 81 82 |lo 8 00
So, we can obtain
1 o1 (||Ve1 Vg Vg2
—Ikilfwl < (H——— o1+ ||— Fw )l wl
m 82 |0 8 00
_||Ver Vel .
< Gsl| 2L - 2821 L gl w? (53)
81 82 oo

for some constantg; = ¢; (ro, Vo, m, M), i = 15, 16, because € A.
So by 60)—(53) we obtains

2

1 Vv \Y%
V1<l A7 S+ ear|| 5L Y82

81 82

+ c1gl w12 (54)

o0

for some constants; = c¢;(tg, Vo, m, M), i = 17, 18.
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Thus, fort >t > 0, by @2)—(44), (48), (49 and 64), one has

1ld 2 2 5 = 2
EEIIWII + & —e7—Cfg—Clo—c1u—cs II'w |l

2
Vg1 Vg2

S
81 82

3
o

which implies that
d 2 2
E” W+ f1 Iw (<, fort>1 >0,

where

By = n% — 2c7 — 2¢g — 2810 — 2¢14 — 2c18,
2

P2

Vg1 Vg
s e | T2 e
g1 g2

o0

So, by the Gronwall inequality, one has
I w(e) 12< | w(O) [[2eP1' + C(t) B, for 110> 0,

where C(¢) is a positive bounded-function. But, we haven(0) = v1(0) — v2(0) =
Vo — Vo = 0 and by the definition of5,, f, — 0 as|| g1 — g2 w1~ — 0. Hence, for
any fixedt > > 0 andvgp € Hy, || w(t) 1% goes to zero ag g1 — g2 llwre — O. It
means that for the fixetlg € H1 andt >y > 0, we have

Il & (g1, Vo, 1) — Gu(g2, Vo, 1) |* = || Prow(g1, P Vo, 1) — P10y (g2, PeyVo, 1) ||
= || Prua(r) — Pauz(®) I = || va(t) — V(1) |12
= | w(t) [2<C(1)By,
which goes to zero a$ g1 — g2 |y~ — 0. Hence, the solutiow, (g,V,?) on the

spaceH; is continuous in terms of € A.
Therefore, by Lemmd, for any ¢ > O there exist such that

- ~ 2
| 6w(g1, V1, 11) — Gy (g2, V2, 12) ||

- - 2 - - 2
< |l owlg1, V1, 1) — 0w(g2, V1, 1) |I” + || 6w (g2, V1, 11) — 0w (g2, V2, 12) [|“<é,
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whenever
I (g1, V1, 1) — (g2, V2, 12) |l Ax Hyx(0.00)

< | (815 Ve, 1) — (82, V1, 1) | Ax Hy x(0.00)

+ 1l (82, V1, 1) — (82, V2, 12) || g Hyx (0,00) < O-

Thus, we complete the proof.[]
Now, let us go back to Remark and Propositiorb.
Let up € Hy andu, =V, + Vp, be a weak solution of the EqLQ) with the initial

datau, (0) = P,uo. Then, forg € 4, by (15), there exists some, = f,(ug) >0 such
that

M2
2 2 2
lug®) Iy <202l g <575l f il for 1>15(uo).

Also, by @0) one obtains

2 2
Ve 7 =1 Prug I°< for  1>1,(up).

Al

Definition 5. We define the set/,, C H; as

2 M? 2
Uw:{veHl vl <2n4m3llfll }

Proof of Theorem I. First, for ¢ € A, one can see easily from the definition of
Gw(g, Vv, 1) that the semiflowg,, (g, v, t) on Hy has a global attractor. In facEy A, is
the global attractor of the semiflod, (g, v, 1), where A, is the global attractor of the
semiflow generated by weak solutions @0y,

Also, by Lemmas6 and 8, one note that,, (1, Vv, ) = g, (1, Vv, t) be imbedded into
continuous familya,, (g, v, t).

Then, by the definition of the sét,, for g € A, 6, (g, v, t) is asymptotically compact
on U, because the global attractét.4, of the semiflows, (g, v, ) is contained in
the setU,,.

Therefore, by the Robustness theorem, Proposifiothat ., (g, v, t) is robust at
P1 A1 = A; the attractor ofg, (1, v, t) = 0, (1, v, t). One should note thatl; is the
global attractor of the 2D Navier—Stokes equations]
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4.3. Proof of Theorem Il

We definea,(g, Vv, ) on Vq by
5’S(87V7 I)ZP]_US(g’ PgV7 t)a (55)

where o, (g, Pgv,t) is a semiflow on the spac¥, generated by the strong solutions
of the Eq. (0) with the initial condition P,u.

Lemma 9. Let the forcing termf e L?(Q) be a time-independent function. Then
os(g, Vv, ) is a semiflow onvy, for any fixedg € 4.

Proof. Since o, (g, P,Vv,t) is a semiflow onV,, one has by Lemma that
05(8,V,0) = P1(0s(g, PV, 0)) = P1(PeV) =V

for all v € V1. Similar to Lemma6, one can obtains that
os(g,05(g,V,s), 1) =0as(g,V,s +1), s,t=0.

Next, to prove the continuity of, with respect tou, we have from (5) and3@) that
1 2
I Af (Gs5(g, V1, 1) — Gs(g, V2, 1) |l

1 2
= | Af (P10s(g, Pgvy, 1) — Pio(g, Pgva, )l

1 2
= || A7 (P1los(g, PeV1, 1) — a5(g, PgVa, D)) |l

1 1 2
n—1|| Aglos(g, Pev1, 1) — a5(g, Peva, D] |,

N

2

)

1 1 2 1 1
< 20N AL (Pva = Povo) ll, S o201 Af i = va) |

which implies the continuity with respect 1@ on the spacé/i, for fixed r > 0. Also,
by (33), one obtains

1 2
I Af(Gs(g, V. 11) — (g, V. 12) ||

1 2
= | Af(PlGS(g, ng9 f1) — P1os(g, PgV, 2)) |

1 1 2
S 1 AG(05(8, PV 11) = 05(8, PV, 22)) -
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Since o (g, P,v,t) is a semiflow onV,, a,(g, P,V, 1) is continuous with respect to
and henceg; (g, Vv, t) is continuous with respect tg on the spacd/;. 0O

Now, we want to show that the semifloi (g, v, ¢) is continuous with respect tg,
on the spacé/;.

Lemma 10. Let the forcing termf e L2(Q) be a time-independent function with
Jofdx=0.Then the semiflows

Gs(g, Vv, 1) : A x Vi x (0,00) > V1

is continuous.

Proof. By taking the scalar product odiw into the Eg. 41), one obtains

L4y by ) w2
2dr" 1 !
< (V1 - VW, A1W)] + [{(W - V)vz, Aw)|

+ (W - V)Vp1, AW)| + [{(v2 - V)V(p1 — p2), A1W)|
+ [{(PLPg(V(p1 = p2) - V)V1, AaW)| + [(PLPg(Vp2 - V)W, A1w)|
= [+ [T+ [T+ |IV[+|V]+|VI] (56)

for r >t > 0. Now, by applying the Young inequality, Propositi@and Lemma?,
we have

1
1] = [{(v1- VIW, AqW)| <)ol Agve || [ AFW ||| Azw ||
1 2 ;2
< gl Aw |2+ c1oll AW || (57)

for some constanti9 = c19(tg, Vo, m, M). Similar to |I| we can obtains by the Young
inequality, PropositiorB and Lemma? that

1
I = [{((W- V)V, AaW) | <7l AFW || || Agvz || || Agw ||

1 2
< Sl AW 12 + cooll AZw || (58)

for some constantog = c2o(t0, Vo, m, M).
Before we estimaté/ /|, sinceg € A one note from 22) and Remark2 that

I pi g3 <00l & lwaeell Ui | g1 <doMoll U; llgr fori=1,2 (59)
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for some positive constaniy = do(m, M). Now, by the Young inequality, Proposition
3, Lemma?, (13) and 69) we have

HIT = [{(W-V)Vp1, AAW)[ <91l W [ g2 | AW I 1T pa [l s

< 7100Moll W ll g2 | Aaw || | ua [l 2

~2 1 1
71000 Moll Aguy [l I AZw [| || Azw ||

N

1
c21Moll Afw || || Azw |

N

1 2
< Sl AW 12 + cooll AZw | (60)

for some constants; = c¢; (ro, Vo, m, M, Mp), i = 21, 22 becauseg € A.
Next, by @5) we have

IVI| = [(PLPg(Vp2- V)W, A1W)|

1
S KVpz- V)w, Aaw)| + — || K1l I Aaw I, (61)

wherek = [,(Vp2 - V)wdx.
Similar to |/11|, by Proposition3, Lemma7, (13) and 69), there exist some constant
¢23 = ¢23(fo, Vo, m, M, Mp) such that

{(Vp2- V)W, AW)| < 71l p2 lgsll W Il gl Azw ||
2

1
< gl AW 1P + caall AFw | (62)
Then by @47) and the Young inequality we have
1
ol K1 IHAw | < caoll VE lleoll W I Azw ||
1
< c10ll Vg llooll AFW | || Agw |
1 2 3.2
< gl Aaw |7+ caall Afw || (63)

for some constantaq = c24(t0, Vo, m, M) becauseg € A.
So by 61)—(63) we have

1 2
VIS AW |12+ (cos+ coa) |l AZW | . (64)
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Next, to estimatg/V|, by Proposition3, Lemma7, (13) and @7), one can get

V] = [{(v2- V)V (p1— p2), AaW)| <71l V2 I g2l p1 — p2 [ g2ll Aaw ||

< 5?1 I Aava || || p1 — p2 llg2ll Aaw || <V1553 | Aaw || || p1— p2 llg2
71003 Vg1 Vg Vg2

<4 |IA1W||<'——— lug | +||— I wl

81 82 |0 00

1 Vgr  Vel[? ;2

< Sl AW 12 Fegp ||[—= — —25|| 4car Il AZW | (65)
8 81 82 oo

for some constants; = c¢;(to, Vo, m, M), i = 26,27 becausg € A.
To estimate|V| we have by 25)

VI = [(PLPg(V(p1— p2) - V)V1, A1W)|
1
< K(V(p1— p2) - Vv, Aiw)| + ;II Kl I Azw (66)

wherek = [,(V(p1 — p2) - V)v1dXx.
Then, similar to|/V|, by Proposition3, Lemma7, (13), (25 and @7) that

K(V(p1—= p2) - VIV, AaW)| < 71ll p1 = p2 [ m2ll Vo ll g2l Aaw |

2

Ver Vel i
+c29 | AW | (67)

1 2
< <l Aw [|© + co8
8 81 82

[0.]

for some constants; = c;(tg, Vo, m, M), i = 28, 29.
Also, by @7), (48) and the Young inequality we obtain

1
—|| K Azw ||
51 Vg1 Vg
('——— IWII | Aaw ||
m'? 81
Vg1 Vg 12
—n A P+ x| 282 - 82|17 oy Aiw | (68)
82 |loo
for some constants; = ¢; (1o, Vo, m, M), i = 30, 31.
Therefore, by §6)—-(68) we get
Vgl Va2 ;2
|V|<—|| AW |12+ (28 + €30) ||—= — s +(c294c3) | Afw ] . (69)
o0
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Thus, fort >t > 0, we have by §6)—(58), (60), (64), (65) and €9) that

d 1 2 1 2
E” AZwW || < 2(c19+4 20+ 22+ 23+ coa+ 27+ c29+ c31) || AZW |
v Vel|?
+ 2(c26 + c28 + ¢30) Hﬁ _ 182
81 82 |l
which implies that
d % 2 % 2
E“ ATW | <Bz | Afw || + B4 t=10>0,

where

Pz = 2(c19+ 20+ c22 + 24+ c25 + c27 4 c29 + €31),

Ver  Vall?
B4 = 2(c26+ c28+ ¢30) ‘ —= - —=
81 82

o0

Hence, by Gronwall inequality, one has

2

1 1 2 -
I A2w(e) || <) A2w(0) || P + C@) By for t>10> 0,

where C(r) is some positive boundedfunction. But, we havev(0) = v1(0) — v2(0)

1

= vg — Vo = 0 which implies| A7w(0) | = 0. Also, we note that by the definition
1 2

of B4 Py — 0 as| g1— g2 llyre — 0. Therefore,|| AZw(r) | goes to zero as

Il g1 — g2 llwre — 0. It means that for any fixetp € V1 andr>1 > 0, we have

1 2
| A7 (G5(g1, Vo, 1) — Gs(g2, Vo, 1)) |l

2

1
“ AJZ_[Plab(glv Pg]_VOs t) - Plgs(ng PgZVOs Z‘)] ”

2 2

1 1
| A7 (Piui(r) — Prua(0) | = || A7 (va(@) — va(®)) |l

1 2
I Afw(r) | <C(1)Pa,

which goes to zero ap g1 — g2 |l goes to zero. Hence, the solutién(g, v, ) on
the spaceV; is continuous in terms of € A.
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Therefore, by Lemm@, for any ¢ > 0 there existd such that

1 2

| A2 (G5(g1, V1, 11) — Gs(g2, V2, 12)) |

1 2

< A7 (Gw(g1, V1, 11) — Gw(g2, V1, 11)) ||
1 2

+ 1| A7 (Gw(g2, V1, 11) — Guw (g2, V2, 12)) || <e,

whenever
I (g1, V1, 11) — (82, V2, 12) [l Ax vy x(0,00)

< |1 (g1, V1, 11) — (82, V1, 1) 1 Ax vy x(0.00)

+ 1l (82, V1, 1) — (82, V2, 12) Il A vy x(0,00) S O-

Thus, we complete the proof. [

Let vg € V1 andu, is a strong solution of the Eq1() with the initial datau, (0) =
P,vo. Then by (6), there exist &, = #,(vo) and L1 such that

1 2
| AZug(r) ll,<2L1 for all t>1,,

which implies by 83) that
1 2 2L
| A7 Prug || <—1 for all t>1,,
m

whereg € A. One should note that in the inequality6f we can choose the constant
L, which depends only om andM, but not|| Vg ||, wheng € A. Therefore, for the
givenf e L2(Q), there exist some positive constarits = Li(m, M, f) such that

1 2 2L
| Af Prug || <= forall t>1,, ge A
m

Refer to Roh[7] for the details ofL1.

Definition 6. We define the set/; C V1 as

102 2L
Ug={veVs : |A}v] <—1}.
m
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Proof of Theorem II. First, for g € A, one can easily see from the definition of
as(g, Vv, t) that the semiflows,(g, v, ) on the spacé/; has a global attractor as we
mentioned for the semiflovg, (g, Vv, 7).

Also, by Lemmas9 and 10, one note that,(1, v, ) be imbedded into continuous
family o5(g, Vv, ).

Moreover, by the definition of the sdf,, for ¢ € A (g, Vv, t) is asymptotically
compact onU; because the global attractor of the semifléwig, v, 7) is contained in
the setUs.

Therefore, by the Robustness theorem, ProposBighat the semiflows,(g, v, 1) is
robust atA;, the global attractor of,(1, v, r) = o,(1, Vv, t). Note thatA; is the global
attractor of the 2D Navier—Stokes equations.
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