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Abstract

The 2D g-Navier–Stokes equations has the following form:

�u
�t

− ��u + (u · ∇)u + ∇p = f

with the continuity equation

∇ · (gu) = 0,

where g is a suitable smooth real-valued function. For the restricted functiong, Roh showed
the existence of the global attractors for the periodic boundary conditions. One note that we
get the 2D Navier–Stokes equations forg = 1.
Therefore, in this paper we are interested in the behavior of the global attractors of the 2D

g-Navier–Stokes equations asg → 1 in the proper sense and will prove that the semiflows,
generated by the projection of the solutions of theg-Navier–Stokes equations into the solution
space of the Navier–Stokes equations, is robust at the global attractor of the Navier–Stokes
equations with respect tog.
For that, we will use the Robustness theorem developed by Sell and You.
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1. Introduction

In this paper, we study the behavior of solutions of theg-Navier–Stokes equations
in spatial dimension 2. These equations are a variation of the standard Navier–Stokes
equations, and they assume the form,

�u
�t

− ��u + (u · ∇)u + ∇p = f in �, (1)

1

g
(∇ · gu) = ∇g

g
· u + ∇ · u = 0 in �, (2)

whereg = g(x1, x2) is a suitable smooth real-valued function defined on(x1, x2) ∈ �
and� is a suitable bounded domain inR2. Notice that ifg(x1, x2) = 1, then the Eqs.
(1) and (2) reduce to the standard Navier–Stokes equations,

�u
�t

− ��u + (u · ∇)u + ∇p = f in �, (3)

∇ · u = 0 in �. (4)

Of particular interest in this paper, is the problem where the gradient∇g is small and
g is “close to” 1. In this case, one can view theg-Navier–Stokes equations as a small
perturbation of the standard Navier–Stokes equations. We are interested in comparing
the long-time dynamics of the solution of the two systems.
While the g-Navier–Stokes equations form a meaningful problem in a 3D spatial

region� ⊂ R3, whereg = g(x1, x2, x3) and(x1, x2, x3) ∈ �, we are specially interested
in the 2D problem here. The reason for this is that the 2Dg-Navier–Stokes equations
arise in a natural way in the study of a standard 3D problem, as we show in the next
section. We do not claim that theg-Navier–Stokes equations form a model of any fluid
flow. They may, or may not. That they are derived from a standard 3D problem is the
basis for our study.
Before we present the derivation of theg-Navier–Stokes equations, it is convenient

to recall some relevant aspects of the classical theory of the Navier–Stokes equations.
For many years, the Navier–Stokes equations were investigated by many authors and
the existence of the attractors for 2D Navier–Stokes equations was first proved by
Ladyzhenskaya[3] and independently by Foias and Temam[2]. The finite-dimensional
property of the global attractor for general dissipative equations was first proved by
Mallet–Paret[5] and Mañé[6]. For the analysis on the Navier–Stokes equations, one
can refer to[1,4,8,9], specially[10] for the periodic boundary conditions.
In this paper, we will have the following organization. In Section 2, we will present

the derivation of 2Dg-Navier–Stokes equations from 3D Navier–Stokes equations with-
out the proofs (see Roh[7] for the details). For the boundary conditions, we will con-
sider the periodic boundary conditions, while we can get same results for the Dirichlet
boundary conditions on the smooth bounded domain. In Section 3, we will present
the mathematical spaces and the preliminary results of theg-Navier–Stokes equations.
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Finally, in Section 4 we will prove the robustness of the global attractors with respect
to the functiong in the proper space atg = 1.

2. Derivation of the 2D g-Navier–Stokes equations

Let �g = �2 × [0, g], where�2 is a bounded region in the plane andg = g(x1, x2)

is a smooth function defined on�2 with 0 < m�g(x1, x2)�M, for (x1, x2) ∈ �2.
Now, we consider the 3D Navier–Stokes equations,

�U
�t

− ��U + (U · ∇)U + ∇� = F in �g,

∇ · U = 0 in �g

with the boundary condition

U · n = 0 on �top�g ∪ �bottom�g, (5)

where

�top�g = {(x1, x2, x3) ∈ �g : x3 = g(x1, x2)},
�bottom�g = {(x1, x2, x3) ∈ �g : x3 = 0}.

The lateral boundary condition corresponding to��2 does not affect to the derivation
of the 2D g-Navier–Stokes equations. But, in this paper we will consider the periodic
boundary conditions to study the 2Dg-Navier–Stokes equations.
Now we defineu = (u1,u2) as

ui = ui (x1, x2) = 1

g(x1, x2)

∫ g(x1,x2)

0
Ui (x1, x2, x3) dx3

for i = 1,2 and we get the following proposition.

Proposition 1. Assume that∇ · U = 0 in �g and that (5) is valid. Then one has

∇2 · (gu) = �(gu1)
�x1

+ �(gu2)
�x2

= ∇g · u + g(∇2 · u) = 0 in �2,

where∇2 =
(

�
�x1

, �
�x2

)
and ∇g =

(
�g
�x1

,
�g
�x2

)
.

Proof. See Roh[7] for the details. �
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Now, we consider the special case like

U(x1, x2, x3) = (U1(x1, x2),U2(x1, x2),U3(x1, x2, x3)).

By the previous proposition, foru = (U1, U2), one has∇ · (gu) = 0 andu satisfies the
2D g-Navier–Stokes equations. Moreover, we have

U3(x1, x2, x3) = −x3

(
�u1
�x1

+ �u2
�x2

)
= −x3(∇2 · u),

when (5) and ∇ · U = 0 in �g are valid. This is the basis for our study of the 2D
g-Navier–Stokes equations.

3. Preliminaries

In this section, we will present the results of theg-Navier–Stokes equations one can
find in Roh [7]. Here, we consider the periodic boundary conditions on the domain
� = (0,1) × (0,1) and assumeu, p and the first derivatives ofu to be spatially
periodic, i.e.,

u(x1 + 1, x2) = u(x1, x2) = u(x1, x2 + 1), (x1, x2) ∈ R2

and similarly forp and �ui

�xj
.

For the functiong, throughout this paper, we assume that

1. g(x) ∈ C∞
per(�) and

2. 0< m�g(x, y)�M for all (x, y) ∈ �.
Note that the constant functiong = 1 is also included for our functiong.

Now, we define the Hilbert spaceL2(�, g) = L2(�, R2, g), which is the spaceL2(�)

with the scalar product and the norm given by

〈u, v〉g =
∫
�
(u · v) g dx and ‖ u ‖2g = 〈u,u〉g,

wherex = (x1, x2). Similarly, we define the spaceH 1(�, g) which is the spaceH 1(�)

with the norm by

‖ u ‖H1(�,g) =
[
〈u,u〉g +

2∑
i=1

〈Diu,Diu〉g
] 1

2

,
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where �u
�xi

= Diu. Specially, for the constant functiong = 1, we denote that

‖ u ‖1 = ‖ u ‖, ‖ u ‖H1(�,1) = ‖ u ‖H1(�).

One can see easily that the norm‖ u ‖ is equivalent to the norm‖ u ‖g as well as the
norm ‖ u ‖H1(�) is equivalent to the norm‖ u ‖H1(�,g).
Now, we consider the following closed subspaces ofL2(�, g):

H̃ = CLL2(�,g){u ∈ C∞
per(�) : ∇ · gu = 0}.

Then, we define the orthogonal projectioñP : L2
per(�, g) �→ H̃ and we can getQ =

H̃⊥ as

Q = CLL2(�){∇� : � ∈ C1
per(�̄, R)},

which do not depend on the functiong.
Therefore, for the givenv ∈ L2

per(�, g), we can findu ∈ H̃ and∇p ∈ Q such that
v = u + ∇p.
But, for our problem, we are interested in the dynamics on the following spaces:

Hg = CLL2(�,g)

{
u ∈ C∞

per(�) : ∇ · gu = 0,
∫
�
u dx = 0

}
,

Vg =
{
u ∈ H 1

per(�, g) : ∇ · gu = 0,
∫
�
u dx = 0

}
,

whereHg is endowed with the scalar product and the norm inL2(�, g), andVg is the
spaces with the scalar product and the norm given by

〈u, v〉Vg =
∫
�
(Diu · Div) g dx and ‖ u ‖2Vg

= 〈u,u〉Vg , (6)

wherex = (x1, x2).
Also, for a givenv ∈ L2

per(�, g), one obtains

v = u + k
g

+ ∇p for u ∈ Hg, ∇p ∈ Q, k = 1∫
�

1
g
dx

∫
�
v dx (7)

and specially forg = 1 one has

v = u + k + ∇p for u ∈ H1, ∇p ∈ Q, k =
∫
�
v dx. (8)
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As a result, we can define the orthogonal projectionPg : L2
per(�, g) �→ Hg, which

is similar to the Lerary projection, asPgv = u.
Now, throughout this paper we define theg-Laplacian�g by

−�gu = −1

g
(∇ · g∇)u = −�u − 1

g
(∇g · ∇)u,

which is a perturbation of−�u. Then, for� = 1, (1) can be written as

�u
�t

− �gu + 1

g
(∇g · ∇)u + (u · ∇)u + ∇p = f in �. (9)

Thus, by taking the orthogonal projectionPg into (9), one obtains

du
dt

+ Agu + Bg(u,u) = q on Hg, (10)

whereAgu = Pg(−�gu), Bg(u,u) = Pg(u ·∇)u, q = Pg[f − 1
g
(∇g ·∇)u]. In this paper,

we will call the linear operatorAgu = Pg(−�gu) as theg-Stokes operator. Also, we
obtain the following proposition for theg-Stokes operator.

Proposition 2. For the g-Stokes operatorAg, the followings hold:
(i) The g-Stokes operatorAg is a positive, self-adjoint operator with compact inverse,

where the domain ofAg, D(Ag) = Vg ∩ H 2(�, g).
(ii) There exist countable eigenvalues ofAg satisfying

0< �(g)��1��2��3� · · · ,

where�(g) = 4�2m
M

and �1 is the smallest eigenvalue ofAg. In addition, there exist
the corresponding collection of eigenfunctions{e1,e2,e3, . . .} forms an orthonormal
basis forHg.

Then, for the fractional power of theg-Stokes operator, one can obtain same results
as the one in Sell and You[8]. Since the operatorAg is self-adjoint one can have

〈Agu,u〉g = 〈A
1
2
g u, A

1
2
g u〉g for u ∈ D(Ag) = Vg ∩ H 2(�, g) (11)

and since the orthogonal projectionPg is self-adjoint operator, by using integration by
parts we have

〈A
1
2
g u, A

1
2
g u〉g = 〈Agu,u〉g =

〈
Pg

[
−1

g
(∇ · g∇)u

]
,u
〉
g

=
∫
�
(∇u · ∇u)g dx,
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which implies by (6) that

‖ A
1
2
g u ‖

2

g
= ‖ ∇u ‖2g = ‖ u ‖2Vg

for u ∈ Vg. (12)

In addition, foru ∈ D(A�
g) and 0���1, one specially obtains

�2�1 ‖ u ‖2g �‖ A�
gu ‖2

g
and ‖ u ‖H2�(�,g)� �̃ ‖ A�

gu ‖
g

(13)

for some positive�̃ = �̃(�, �1), where�1 is the first eigenvalue ofAg.
Next, we denote the bilinear operatorBg(u, v) = Pg(u · ∇)v and the trilinear form

bg(u, v,w) =
2∑

i,j=1

∫
�
ui (Divj )wj g dx,

whereu, v,w lie in appropriate subspaces ofL2
per(�, g) andDi = �

�xi
.

Then, one obtains

bg(u, v,w) =
2∑

i,j=1

∫
�
ui (Divj )wj g dx =

2∑
i,j=1

∫
�

gui (Divj )wj dx

= −
2∑

i,j=1

∫
�

Di(gui )vjwj dx −
2∑

i,j=1

∫
�

guivj (Diwj ) dx

= −
2∑

i,j=1

∫
�

guivj (Diwj ) dx = −bg(u,w, v)

for sufficient smooth functionsu, v,w ∈ Hg and hencebg(u, v,w) = −bg(u,w, v)
which impliesbg(u, v, v) = 0. For the nonlinear term we obtained same results as the
one in Section 6.1.2 of Sell and You[8].

Proposition 3. Let �i , i = 1,2,3 be nonnegative real numbers that satisfy

�1 + �2 + �3�1

and the vector(�1, �2, �3) is not equal to(1,0,0), nor (0,1,0), nor (0,0,1). Then
there are positive constants	i = 	i (g, �1, �2, �3,�) for i = 1,2 such that

|b(u, v,w)|�	1 ‖ u ‖H �1‖ v ‖H(�2+1)‖ w ‖H �3 ,
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whereu ∈ H �1, v ∈ H �2+1 and w ∈ H �3, and

|b(u, v,w)|�	2 ‖ A
�1
2
g u ‖

g
‖ A

(�2+1)
2

g v ‖
g
‖ A

�3
2
g w ‖

g

for all u ∈ V
�1
g , v ∈ V

(�2+1)
g and w ∈ V

�3
g .

Now, we are in the position to see the existence of the solutions of theg-Navier–
Stokes equations. For the proofs, Roh[7] followed the presentation given by Sell and
You [8].

Proposition 4. Let f ∈ L∞(0,∞;L2(�, g)) be given. Then for everyu0 ∈ Hg there
is precisely one weak solution(of class LH) u = u(t) on [0,∞) of (10), satisfying
u(0) = u0. Moreover one hasu(t) ∈ C[0,∞;Hg). Also, let u = u(t) be any weak
solution of(10) on [0,∞) with initial condition u(0) = u0 ∈ Hg. Then for eacht0 > 0,
v(t) = u(t+t0) is a strong solution of(10) on [0,∞) with initial conditionv(0) = u(t0)
andDtu ∈ L2

loc(0,∞;Hg).

In next theorem, we will see uniqueness and continuity of the solution with respect
of the datau0, f .

Proposition 5. Let fi ∈ L∞[0,∞;L2(�, g)) be given anddi , i = 1, . . . ,5, are con-
stants. Fori = 1,2, let ui = ui (t) denote two solutions of(10) in Proposition4 defined
on the interval[0,∞), with data (ui (0), fi ). We also denote
1(t), 
2(t) and 
3(t) are
monotone, nondecreasing functions defined for0� t < ∞. Then, for ui (0) ∈ Hg, one
has

‖ u1(t) − u2(t) ‖2g �e
1(t) (‖ u1(0) − u2(0) ‖2g + 2‖ A
− 1

2
g (f1 − f2) ‖

2

∞ t)

and for ui (0) ∈ Vg, one has

‖ A
1
2
g (u1(t) − u2(t)) ‖

2

g
�e
2(t)(‖ A

1
2
g (u1(0) − u2(0)) ‖

2

g
+ 2‖ f1 − f2 ‖2∞t).

Here, we denote


1(t) =
∫ t

0
2

(
d1‖ A

1
2
g u1(s) ‖

2

g
+ ‖ ∇g ‖2∞

m2

)
ds

and


2(t) =
∫ t

0
2

(
‖ ∇g ‖2∞

m2 + d2

�21
‖ Agu1(s) ‖2

g
+ d3

�21
‖ A

1
2
g u2(s) ‖

2

g

)
ds,

where�1 is the first eigenvalue ofAg.
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Remark 1. Set

�1 = �1(g) = �1 − 2

m2‖ ∇g ‖2∞, �2 = �2(g) = 2

�1�1
, (14)

where�1 is the first eigenvalue ofAg and

‖ ∇g ‖∞ = sup
(x,y)∈�

|∇g(x, y)|.

Then, by Proposition2, we have�1� 4�2m
M

. So, if ‖ ∇g ‖2∞ < m3�2
M

then

�1 = �1 − 2

m2‖ ∇g ‖2∞ � 4�2m
M

− 2

m2‖ ∇g ‖2∞ >
2�2m
M

and

�2 = 2

�1�1
<

M2

4�4m2 .

Therefore, if‖ ∇g ‖2∞ < m3�2
M

then we can choose�1, �2 only depend onm, M.
Then, for small enough‖ ∇g ‖∞, i.e., g “close” to 1, in the following proposition

we see the dissipativity of the solutions in the spacesHg, Vg andD(Ag).

Proposition 6. We assume that‖ ∇g ‖2∞ < m3�2
M

and f ∈ L2(�, g). Then the following
hold:
1. For u0 ∈ Hg, one has

‖ u(t) ‖2g �e−�1t‖ u0 ‖2g + �2‖ f ‖2g (15)

and

(
1− m

2M

) ∫ t

t1

‖ A
1
2
g u(s) ‖

2

g
ds�‖ u(t1) ‖2g + 2(t − t1)

�1
‖ f ‖2g

for 0� t1� t < ∞.
2. For u0 ∈ Vg then there exist constants, r1 = r1(m,M, f ), r2 = r2(m,M, f ) and L1

= L1(m,M, f )(L1 does not depend onu0) such that fort �0,

‖ A
1
2
g u(t) ‖

2

g
�r1(1+ ‖ A

1
2
g u0 ‖

2

g
)e−�1t + L1. (16)
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In addition, if u0 ∈ D(Ag) and the forcing termf ∈ Vg then there exists constants
r3 = r3(m,M, f ) and L2 = L2(m,M, f )(L2 does not depend onu0) such that

‖ Agu(t) ‖2
g
�r3(1+ ‖ Agu0 ‖2

g
)e−�1t + L2 f ort �0. (17)

As a result of the Proposition6, we are in the position to prove the existence of
the global attractors for the semiflows generated by the weak and strong solutions.
Here, we assume that the forcing termf is a time-independent function. We will let
�w(t,u0) = Sw(t)u0 denoted the semiflows onHg generated by a weak solution on
with the data(u0, f ) whereu0 ∈ Hg andf ∈ L2(�, g). Likewise, let�s(t,u0) = Ss(t)u0
denote the semiflows onVg generated by a strong solution with the data(u0, f ), where
u0 ∈ Vg and f ∈ L2(�, g).

Proposition 7. Let f ∈ L2(�, g) and we assume that‖ ∇g ‖2∞ < m3�2
M

. Then, for
u0 ∈ Hg, �w(t,u0) = Sw(t)u0 is a semiflow onHg which is point dissipative and
compact fort > 0. Also, there exists a global attractorAw for Sw(t) and the semiflow
Sw(t) is robust atAw for every f ∈ L2(�, g).
Likewise for u0 ∈ Vg, �s(t,u0) = Ss(t)u0 is a semiflow onVg which is point

dissipative and compact fort > 0. Furthermore, there exists a global attractorAs for
Ss(t) and the semiflowSs(t) is robust atAs for every f ∈ L2(�, g). In addition, we
note thatAs = Aw, for fixed f ∈ L2(�, g).

4. Robustness of the global attractors

In this section, we will study the behavior of the global attractors of theg-Navier–
Stokes equations asg → 1 in the proper sense.
Before we do that we will first review useful definitions and propositions developed

in Section 2.3 of Sell and You[8]. Then, we will describe two main theorems of this
paper. In Section 4.1, we prove useful lemmas for main theorems. In Section 4.2, we
will prove the first main theorem that the semiflows generated by the weak solutions
of the g-Navier–Stokes equations is robust at the global attractor of the semiflows
generated by the weak solutions of the Navier–Stokes equations. In Section 4.3, we
will prove the results of Section 4.2 for the strong solutions.

Definition 1. Let � be a metric space. We will say thatS�, for � ∈ �, is a continuous
family of semiflowson M, provided thatS�(t)u = �(�, u, t), and the mapping� :
� × M × [0,∞) → M satisfies the following conditions:
1. the restriction mapping� : � × M × (0,∞) → M is continuous.
2. for each� ∈ �, the mappingS�(t) is a semiflow onM.
We will say that the semiflowS0(t) is imbedded into a continuous familyof semiflows

S�, for � ∈ �, provided that there is a�0 ∈ � such that

S�0(t)u = S0(t)u for u ∈ M and t ∈ [0,∞).



462 J. Roh / J. Differential Equations 211 (2005) 452–484

Definition 2. Let A0 be an attractor for a given semiflowS0(t) on the Banach space
W. Let S0(t) be imbedded into a continuous family of semiflowsS�(t), where� ∈ �
and S�0(t) = S0(t). We will say that the familyS�(t) is robust at A0, with respect to
� at � = �0, provided that, for every > 0, there is a neighborhoodO = O() of �0
in � such that for each� ∈ O, the semiflowS�(t) has an attractorA� and

A� ⊂ N(A0) for all � ∈ O,

where

N(A0) = {u ∈ W : distW (u,A0)�}.

Definition 3. Let � be a semiflow onM ⊂ W . We will say that� is asymptotically
compacton a setB ⊂ M, if for any sequencesun ∈ B and tn → ∞, there exist
subsequences, which we relabel asun and tn, with the property that the limitv =
lim S(tn)un exist andv ∈ M.

Proposition 8. Let � be a semiflow onM ⊂ W . Let A be a nonempty, compact set in
M, and assume thatA attract a nonempty set B uniformly. Then� is asymptotically
compact on B.

Proposition 9 (Robustness theorem). Let S0(t) be a semiflow on the Banach space W
and letA0 be an attractor forS0(t).We also letU1 be any fixed, bounded neighborhood
of A0 and letS0(t) be imbedded into any continuous familyS�(t), where each semiflow
S�(t), for � ∈ �, is asymptotically compact onU1. Then the familyS�(t) is robust at
A0.

Let us go back to our problem. We define�̃w(g, v, t) on H1 by

�̃w(g, v, t) = P1�w(g, Pgv, t),

where�w(g, Pgv, t) is a semiflow on the spaceHg generated by the weak solutions of
Eq. (10) with the initial conditionPgv. We will see later that̃�w(g, v, t) is a semiflow
on H1. Then, we prove that the family of the semiflows�̃w(g, v, t) with respect tog
is robust at the global attractor of the semiflow�̃w(1, v, t) = �w(1, v, t).

Theorem I. Let f ∈ L2(�) and g ∈ � ⊂ W2,∞(�), where� is given in Definition
4. Then, for every g ∈ �, �̃w(g, v, t) has a global attractor and the family of the
semiflows with respect to g, �̃w(g, v, t), is robust at the global attractor of the semiflow
�̃w(1, v, t).

Also, we can define the semiflow onV1 by

�̃s(g, v, t) = P1�s(g, Pgv, t),
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where�s(g, Pgv, t) is a semiflow on the spaceVg generated by the strong solutions
of Eq. (10) with the initial conditionPgv. And we get the following theorem, due to
Robustness theorem.

Theorem II. Let f ∈ L2(�) and g ∈ � ⊂ W2,∞(�), where� is given in Definition
4. Then, for every g ∈ �, �̃s(g, v, t) has a global attractor and the family of the
semiflows with respect to g, �̃s(g, v, t), is robust at the global attractor of the semiflow
�̃s(1, v, t).

4.1. Useful lemmas

In this section, one should recall that we denote byH1, V1, P1, A1 instead ofHg,
Vg, Pg, Ag for the constant functiong = 1.
By using the fact that the pressure spaceQ does not depend on the functiong we

can have the following.

Lemma 1. Assume that∇p ∈ Q and p ∈ H 3(�). Then we have

Pg

[
d

dt
(∇p(t))

]
= d

dt
Pg(∇p(t)) = 0,

Pg[−�(∇p(t))] = Pg[∇(−�p(t))] = 0,

Pg[(∇p(t) · ∇)∇p(t)] = Pg

[
∇
(
1

2
(∇p(t) · ∇p(t))

)]
= 0.

One should note that Lemma1 also holds for the constant functiong = 1.

Lemma 2. For every u1,u2 ∈ Hg, if P1u1 = P1u2 then u1 = u2. Also, for v1, v2 ∈
H1, if Pgv1 = Pgv2 then v1 = v2. In other words, P1Pg(v) = v, for v ∈ H1, and
PgP1(u) = u, for u ∈ Hg.

Proof. Assume thatP1u1 = P1u2. Then, by (8) there exist∇pi ∈ Q, for i = 1,2, such
that ui = P1ui + ∇pi, becausek =

∫
� ui dx = 0. So, we haveu1 − u2 = ∇(p1 − p2).

But u1 − u2 ∈ Hg and∇(p1 − p2) ∈ H⊥
g . Therefore,u1 − u2 = 0. Similarly by using

(7) one can prove the others.�

For the periodic boundary condition we consider the pressure termp(x) with
∫
� p(x)

dx = 0. Therefore, for the smooth enough functionp(x) one obtains

4�2 ‖ ∇(p) ‖2� ‖ �p ‖2 and c1 ‖ p ‖H2 �‖ �p ‖�c2 ‖ p ‖H2 (18)
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for some constantsci , i = 1,2. Then, as a corollary of the previous lemma we can
obtain the following.

Corollary 1. Assume thatu ∈ Hg with

u = v + ∇p f or v ∈ H1, ∇p ∈ Q. (19)

Then there exist constantsc3 = c3(m,M) and c4 = c4(m,M) such that

‖ �p ‖ � c3 ‖ ∇g ‖∞‖ u ‖, ‖ p ‖H2(�) � c4 ‖ ∇g ‖∞ ‖ u ‖. (20)

In addition, we havec5 = c5(m,M) and c6 = c6(m,M) such that

‖ �p ‖ � c5 ‖ ∇g ‖∞‖ v ‖, ‖ p ‖H2(�) � c6 ‖ ∇g ‖∞ ‖ v ‖. (21)

Proof. By taking the divergence∇· to the both sides of (19), one obtains

∇g

g
· u = −�p (22)

and one can easily get (20).
Next, by using Lemma2 we have thatPgv = u which lead to

‖ u ‖� 1√
m

‖ u ‖g � 1√
m

‖ v ‖g �
√

M√
m

‖ v ‖

so that one can obtains (21). �

Remark 2. By (22), for u ∈ H �(�), one has a constant�0 = �0(m,M) such that
‖ p ‖H �+2 ��0 ‖ g ‖W �+1,∞‖ u ‖H � .

Lemma 3. We assume that
∫
�

1
g
dx = 1. Then, for u ∈ L2(�) we have

P1Pgu = P1u − P1

(
k
g

)
, (23)

wherek = ∫
� u dx. As a result, P1Pgu = P1u if

∫
� u dx = 0.

Furthermore, for u ∈ L2(�) and w ∈ H1 we have

|〈P1Pgu,w〉|� |〈u,w〉| + ‖ 1− g ‖∞
m

‖ k ‖ ‖ w ‖. (24)
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Proof. By (7), for everyu ∈ L2(�) = L2(�, g) there existv ∈ Hg and∇q ∈ Q such
that

u = v + k
g

+ ∇q, wherek =
∫
�
u dx,

which impliesPgu = v. SinceP1(∇q) = 0 and the projectionP1 is linear operator we
get (23).
Since 〈k,w〉 = 0 for w ∈ H1 and the projectionP1 is symmetric we have

|〈P1Pgu,w〉| = |〈P1u,w〉| +
∣∣∣∣
〈
P1

(
k
g

)
,w
〉∣∣∣∣ = |〈u,w〉| +

∣∣∣∣
〈
k
g
,w
〉∣∣∣∣

= |〈u,w〉| +
∣∣∣∣
〈
k
g

− k,w
〉∣∣∣∣ = |〈u,w〉| +

∣∣∣∣
∫
�
(
1

g
− 1)k · w dx

∣∣∣∣
� |〈u,w〉| +

∣∣∣∣
∣∣∣∣1g − 1

∣∣∣∣
∣∣∣∣∞‖ k ‖ ‖ w ‖

which implies (24). �

Remark 3. From (23) we can have the following instead of (24),

|〈P1Pgu,w〉|� |〈u,w〉| + 1

m
‖ k ‖ ‖ w ‖. (25)

In fact, in this paper we need and will use inequality (25) to simplify the calculations.

In next lemma, we will see the relationship between two spacesHgi
for different

gi , i = 1,2.

Lemma 4. We assume that|∇g|2∞ < m3�2
M

. We also letui ∈ Hgi
with

ui = vi + ∇pi f orvi ∈ H1, ∇pi ∈ Q (26)

for i = 1,2 and w = v1 − v2. Then we have positive constant� such that

� ‖ p1 − p2 ‖H2 �
∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ u1 ‖ +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ w ‖, (27)

where� = c1

(
1− ‖∇g2‖∞

2�m

)
and c1 is given in (18).
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Proof. Sincevi ∈ H1, by taking∇ both sides in Eq. (26) one obtains

∇g1

g1
· u1 − ∇g2

g2
· u2 = −�(p1 − p2). (28)

Then, by using the fact

‖ u1 − u2 ‖�‖ v1 − v2 ‖ + ‖ ∇(p1 − p2) ‖ = ‖ w ‖ + ‖ ∇(p1 − p2) ‖,

one has from (18) and (28) that

‖ �(p1 − p2) ‖ =
∣∣∣∣
∣∣∣∣∇g1

g1
· u1 − ∇g2

g2
· u2

∣∣∣∣
∣∣∣∣

�
∣∣∣∣
∣∣∣∣∇g1

g1
· u1 − ∇g2

g2
· u1

∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣∇g2

g2
· u1 − ∇g2

g2
· u2

∣∣∣∣
∣∣∣∣

�
∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ u1 ‖ +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ u1 − u2 ‖

�
∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ u1 ‖ +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ (‖ w ‖ + ‖ ∇(p1 − p2) ‖)

�
∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞‖ u1 ‖ +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞(‖ w ‖ + 1

2�
‖ �(p1 − p2) ‖),

which implies

(
1− ‖ ∇g2 ‖∞

2�m

)
‖ �(p1 − p2) ‖�

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ u1 ‖ +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ w ‖.

Thus, by (18) one obtains (27). �

Next, we want to see the relationship between the norms in the spacesHg andH1

as well as in the spacesVg andV1. Before we do next lemma we recall that‖ A
1
2
g u ‖

g
= ‖ ∇u ‖g and for the case of the constant functiong = 1, one has that forv ∈ V1,

2�‖ v ‖�‖ ∇v ‖ = ‖ A
1
2
1 v ‖

and for v ∈ D(A1),

A1v = P1(−�v) = −�v.
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Lemma 5. We letu ∈ Hg with

u = v + ∇p for v ∈ H1, ∇p ∈ Q. (29)

Then the followings hold:
1. One has

1

M
‖ u ‖2g �‖ v ‖2� 1

m
‖ u ‖2g. (30)

2. For u ∈ Vg, we have

u = v + ∇p, v ∈ V1, ∇p ∈ Q (31)

and

‖ ∇u ‖2 = ‖ ∇v ‖2 + ‖ ∇(∇p) ‖2. (32)

In addition, if |∇g|2∞ < m3�2
M

then one has

l1 ‖ A
1
2
g u ‖

2

g
�‖ A

1
2
1 v ‖

2
� 1

m
‖ A

1
2
g u ‖

2

g
, (33)

where

l1 = l1(g) = 4�2

M (4�2 + c26‖ ∇g ‖2∞)
.

3. For u ∈ D(Ag), we have

u = v + ∇p, v ∈ D(A1), ∇p ∈ Q. (34)

In addition, if |∇g|2∞ < m3�2
M

then one has

l2 ‖ Agu ‖2
g
�‖ A1v ‖2� l3 ‖ Agu ‖2

g
, (35)

where

l2 = l2(g) = 4�4m2

M
(
2�2m + 2�‖ ∇g ‖∞ + c6‖ ∇g ‖2∞

)2



468 J. Roh / J. Differential Equations 211 (2005) 452–484

and

l3 = l3(g) =
(m

√
�g
1 + 2‖ ∇g ‖∞)2

m3�g
1

,

�g
1 is the smallest eigenvalue ofAg.

Proof. One can easily get (30). To get (31), we take∇· into (29) and we have−�p =
∇g
g

· u. So, for givenu ∈ Vg = H 1(�, g) ∩ Hg, one obtainsp ∈ H 3(�) which implies

v ∈ V1(�) = H 1(�) ∩ H1. Also, by integration by parts, we have

〈∇v,∇(∇p)〉 =
∫
�

∇v · ∇(∇p) dx =
∫
�
v · ∇(�p) dx = 0.

Thus, by (31), one obtains Eq. (32),

‖ ∇u ‖2 = 〈∇v,∇v〉 + 〈∇(∇p),∇(∇p)〉 = ‖ ∇v ‖2 + ‖ ∇(∇p) ‖2,

which implies

‖ A
1
2
1 v ‖

2
= ‖ ∇v ‖2�‖ ∇u ‖2� 1

m
‖ ∇u ‖2g = 1

m
‖ A

1
2
g u ‖

2

g
.

Moreover, one has from (21) that

‖ ∇u ‖2 = ‖ ∇v ‖2 + ‖ ∇(∇p) ‖2�‖ ∇v ‖2 + ‖ p ‖2
H2(�)

� ‖ ∇v ‖2 + c26‖ ∇g ‖2∞ ‖ v ‖2�
(
1+ c26‖ ∇g ‖2∞

4�2

)
‖ ∇v ‖2,

which complete the proof of (33). Similar to (31) one can obtain (34). To prove (35)
one take−� to the both sides of (34) to get

−�v = −�u + �(∇p).

Then, since−�v ∈ H1, one has from Lemma2 that P1Pg(−�v) = −�v. So, by
Lemma1, one has

‖ A1v ‖ = ‖ −�v ‖ = ‖ P1Pg(−�v) ‖�‖ Pg(−�v) ‖ = ‖ Pg(−�u + �(∇p)) ‖

= ‖ Pg(−�u) ‖ =
∣∣∣∣
∣∣∣∣Pg

(
−�gu +

(∇g

g
· ∇
)
u
)∣∣∣∣
∣∣∣∣
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� 1√
m

(
‖ Pg(−�gu) ‖

g
+
∣∣∣∣
∣∣∣∣Pg

((∇g

g
· ∇
))∣∣∣∣

∣∣∣∣
g

)

� 1√
m

(
‖ Agu ‖

g
+
∣∣∣∣
∣∣∣∣
(∇g

g
· ∇
)
u

∣∣∣∣
∣∣∣∣
g

)

� 1√
m

(
‖ Agu ‖

g
+ 2‖ ∇g ‖∞

m
‖ ∇u ‖g

)

� 1√
m


‖ Agu ‖

g
+ 2‖ ∇g ‖∞

m

√
�g
1

‖ Agu ‖
g




= 1√
m


1+ 2|∇g|∞

m

√
�g
1


 ‖ Agu ‖

g
,

which implies the right-hand side of (35). To prove the left inequality of (35) we take
−�g to the both sides of (34) to get

−�gu = −�gv − �g(∇p). (36)

One should recall−�gv = −�v −
(∇g

g
· ∇
)
v. So, one has from the factA1v = −�v

that

‖ −�gv ‖ � ‖ −�v ‖ +
∣∣∣∣
∣∣∣∣
(∇g

g
· ∇
)
v

∣∣∣∣
∣∣∣∣ � ‖ −�v ‖ + 2

‖ ∇g ‖∞
m

‖ ∇v ‖

�
(
1+ ‖ ∇g ‖∞

�m

)
‖ −�v ‖ =

(
1+ ‖ ∇g ‖∞

�m

)
‖ A1v ‖,

which implies

‖ −�gv ‖ �
(
1+ ‖ ∇g ‖∞

�m

)
‖ A1v ‖. (37)

Then, one has from Lemma1 that

Pg(−�g(∇p)) = Pg[−�(∇p)] + Pg

[(∇g

g
· ∇
)

∇p

]
= Pg

[(∇g

g
· ∇
)

∇p

]
. (38)
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Hence, one has from (38) that

‖ Pg(−�g(∇p)) ‖
g
�
∣∣∣∣
∣∣∣∣Pg

[(∇g

g
· ∇
)

∇p

]∣∣∣∣
∣∣∣∣
g

�
∣∣∣∣
∣∣∣∣
(∇g

g
· ∇
)

∇p

∣∣∣∣
∣∣∣∣
g

�
√

M

∣∣∣∣
∣∣∣∣
(∇g

g
· ∇
)

∇p

∣∣∣∣
∣∣∣∣� 2

√
M ‖ ∇g ‖∞

m
‖ p ‖H2(�).

Then, by (21), one obtains

‖ Pg(−�g(∇p)) ‖
g
� 2

√
M ‖ ∇g ‖∞

m
‖ p ‖H2 � 2c6

√
M ‖ ∇g ‖2∞

m
‖ v ‖,

which implies

‖ Pg(−�g(∇p)) ‖
g
� c6

√
M ‖ ∇g ‖2∞
2�2m

‖ A1v ‖. (39)

Therefore, by (36), (37) and (39), one has

‖ Agu ‖
g

= ‖ Pg(−�gu) ‖
g
�‖ Pg(−�gv) ‖

g
+ ‖ Pg(−�g(∇p)) ‖

g

� ‖ −�gv ‖
g

+ ‖ Pg(−�g(∇p)) ‖
g

�
√

M‖ −�gv ‖ + ‖ Pg(−�g(∇p)) ‖
g

�
√

M

(
1+ ‖ ∇g ‖∞

�m

)
‖ A1v ‖ + c6

√
M ‖ ∇g ‖2∞
2�2m

‖ A1v ‖,

which complete the proof of the left inequality of (35). �

Remark 4. Since ‖ ∇g ‖2∞ < m3�2
M

one can obtainl1, l2, and l3 which only depend
on m andM but not ‖ ∇g ‖∞.

4.2. Proof of Theorem I

First, we define new set� as the following:

Definition 4. Let us define the set� with the metric inherited fromW1,∞(�) asg ∈ �
if
1. g(x) ∈ C∞

per(�) and
∫
�

1
g
dx = 1 with 0< m�g(x, y)�M, for all (x, y) ∈ �.

2. ‖ g ‖2
W1,∞ < m3�2

M
and ‖ g ‖W2,∞ �M0 for some constantM0.
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Note that in Definition4, the constant functiong = 1 belong to the set� and the
condition

∫
�

1
g
dx = 1 is to simplify the calculations.

We define�̃w(g, v, t) on H1 by

�̃w(g, v, t) = P1�w(g, Pgv, t),

where�w(g, Pgv, t) is a semiflow on the spaceHg generated by weak solutions of the
Eq. (10) with the initial conditionPgu. Then, �̃w(g, v, t) is a semiflow onH1.

Lemma 6. Let f ∈ L2(�) be a time-independent function. Then�̃w(g, v, t) is a semi-
flow onH1, for any fixedg ∈ �.

Proof. Since�w(g, Pgv, t) is a semiflow onHg, one has by Lemma2 that

�̃w(g, v,0) = P1(�w(g, Pgv,0)) = P1(Pgv) = v

for all v ∈ H1 and that fors, t �0,

�̃w(g, �̃w(g, v, s), t) = P1[�w(g, PgP1(�w(g, Pgv, s)), t)]
= P1[�w(g,�w(g, Pgv, s), t)] = P1[�w(g, Pgv, s + t)] = �̃w(g, v, s + t).

Next, we have from (5) that

‖ �̃w(g, v1, t) − �̃w(g, v2, t) ‖2 = ‖ P1�w(g, Pgv1, t) − P1�w(g, Pgv2, t) ‖2

= ‖ P1[�w(g, Pgv1, t) − �w(g, Pgv2, t)] ‖2�‖ �w(g, Pgv1, t) − �w(g, Pgv2, t) ‖2

� 1

m
‖ �w(g, Pgv1, t) − �w(g, Pgv2, t) ‖2

g
� 1

m
e
1(t)‖ Pgv1 − Pgv2 ‖2

g

� 1

m
e
1(t)‖ v1 − v2 ‖2g � M

m
e
1(t)‖ v1 − v2 ‖2,

which implies the continuity with respect tov, for fixed t > 0. Also, one has

‖ �̃w(g, v, t1) − �̃w(g, v, t2) ‖2 = ‖ P1�w(g, Pgv, t1) − P1�w(g, Pgv, t2) ‖2

�‖ �w(g, Pgv, t1) − �w(g, Pgv, t2) ‖2� 1

m
‖ �w(g, Pgv, t1) − �w(g, Pgv, t2) ‖2

g
.

Now, since�w(g, Pgv, t) is a semiflow onHg, �w(g, Pgv, t) is continuous with respect
to t. Therefore,�̃w(g, Pgv, t) is continuous with respect tot. �
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Lemma 7. Assume thatg ∈ � and the forcing termf ∈ L2(�) be a time indepen-
dent function. Letu(t) be a weak solution of the Eq.(10) with the initial condition
Pgu0, whereu0 ∈ H1. Then, for any t0 > 0, there exist�1 = �1(u0, t0,m,M), �2 =
�2(u0, t0,m,M), �3 = �3(u0, t0,m,M) which do not depend on‖ ∇g ‖∞, such that
1. ‖ P1u(t) ‖, ‖ u(t) ‖g ��1 for all 0< t0� t < ∞.

2. If u0 ∈ V1 then ‖ A
1
2
1P1u(t) ‖, ‖ A

1
2
g u(t) ‖

g
��2 for all 0< t0� t < ∞.

3. If u0 ∈ D(A1) then ‖ A1P1u(t) ‖, ‖ Agu(t) ‖
g
��3 for all 0< t0� t < ∞.

Proof. One can obtain�1 by (15) and (30), �2 by (16) and (33). One can also get�3
by (17) and (35). �

Now, we want to show that the semiflow̃�w(g, Pgv, t) is continuous with respect
to g.

Lemma 8. Let the forcing termf ∈ L2(�) be a time-independent function with
∫
� f dx

= 0. Then the semiflows

�̃w(g, v, t) : � × H1 × (0,∞) → H1

is continuous.

Proof. Let v0 ∈ H1 andgi ∈ �, for i = 1,2. Also, we denote byui ∈ Hgi
for the weak

solution of Eq. (10) with the initial conditionPgi
v0. Then, for the solutionui ∈ Hgi

,
we can rewrite by

ui (t) = vi (t) + ∇pi(t), ∇pi(t) ∈ Q, vi (t) ∈ H1.

Sinceui (t) is a strong solution of Eq. (10) for t � t0 > 0, one has from (34) ui (t) ∈
D(Ag), vi (t) ∈ D(A1) andpi(t) ∈ H 3(�) for t � t0 > 0. Also, since

∫
�
(vi · ∇)vi dx =

∫
�
(vi · ∇)∇pi dx =

∫
�
f dx = 0,

we have

P1Pg(vi · ∇)vi = P1(vi · ∇)vi , P1Pg(vi · ∇)∇pi = P1(vi · ∇)∇pi, P1Pgf = P1f .

Thus, by the Eq. (1), Lemmas1 and 3 we have

dvi
dt

+ A1vi + P1(vi · ∇)vi + P1Pg(∇pi · ∇)vi + P1(vi · ∇)∇pi = P1f (40)

for i = 1,2 and t � t0 > 0.
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We denote byw = v1 − v2 and get

dw
dt

+ A1w + P1(v1 · ∇)w + P1(w · ∇)v2

+P1(w · ∇)∇p1 + P1(v2 · ∇)∇(p1 − p2)

+P1Pg(∇(p1 − p2) · ∇)v1 + P1Pg(∇p2 · ∇)w = 0 (41)

for t � t0 > 0. Then, by taking the scalar product withw to both sides of (41) we have

1

2

d

dt
‖ w ‖2 + ‖ A

1
2
1w ‖

2

� |〈(w · ∇)v2,w〉| + |〈(w · ∇)∇p1,w〉| + |〈(v2 · ∇)∇(p1 − p2),w〉|
+ |〈P1Pg(∇(p1 − p2) · ∇)v1,w〉| + |〈P1Pg(∇p2 · ∇)w,w〉|

= |I | + |II | + |III | + |IV | + |V | (42)

for t � t0 > 0. Now by Lemma7, (12), the Sobolev imbedding inequality and the
Young inequality we obtain

|I | = |〈(w · ∇)v2,w〉|�2 ‖ w ‖ ‖ ∇w ‖ ‖ ∇v2 ‖

� 1
8‖ A

1
2
1w ‖

2
+ 16‖ A

1
2
1 v2 ‖

2
‖ w ‖2

� 1
8‖ A

1
2
1w ‖

2
+ c7‖ w ‖2 (43)

for some positive constantsc7 = c7(t0, v0,m,M). Sinceg ∈ �, by (12), (20), Lemma
7, the Sobolev imbedding inequality and the Young inequality we have

|II | = |〈(w · ∇)∇p1,w〉|�2 ‖ w ‖ ‖ ∇w ‖ ‖ p1 ‖H2

� 1
8‖ A

1
2
1w ‖

2
+ 16c24‖ ∇g ‖2∞‖ ug ‖2‖ w ‖2

� 1
8‖ A

1
2
1w ‖

2
+ c8‖ ∇g ‖2∞ ‖ w ‖2

� 1
8‖ A

1
2
1w ‖

2
+ c̃8 ‖ w ‖2 (44)

for some positive constants̃c8 = c̃8(t0, v0,m,M) and c8 = c8(t0, v0,m,M).
Now, by (25) we obtain

|V | = |〈P1Pg(∇p2 · ∇)w,w〉| = |〈(∇p2 · ∇)w,w〉| + 1

m
‖ k ‖ ‖ w ‖, (45)

wherek = ∫
�(∇p2 · ∇)w dx.
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Then, by the Sobolev imbedding inequality, (20) and Lemma7, we have

|〈(∇p2 · ∇)w,w〉| � ‖ ∇p2 ‖L4 ‖ ∇w ‖‖ w ‖L4�‖ p2 ‖H2 ‖ w ‖ 1
2‖ ∇w ‖ 3

2

� 4c4‖ ∇g ‖∞ ‖ ug ‖ ‖ w ‖ 1
2‖ ∇w ‖ 3

2

� 1
8‖ A

1
2
1w ‖

2
+ c9‖ ∇g ‖4∞‖ w ‖2 (46)

for some constantc9 = c9(t0, v0,m,M).
Since, by using the integration by parts, (20) and Lemma7, we can get

1

m
‖ k ‖ � 1

m

∣∣∣∣
∫
�
(∇p2 · ∇)w dx

∣∣∣∣ � 1

m

∣∣∣∣
∫
�
(�p2)w dx

∣∣∣∣
� 1

m
‖ �p2 ‖ ‖ w ‖� c4

m
‖ ∇g ‖∞‖ ug ‖ ‖ w ‖

� c10‖ ∇g ‖∞‖ w ‖ (47)

for some constantc10 = c10(t0, v0,m,M).
Hence, by (45)–(47) we obtain

|V | � 1
8‖ A

1
2
1w ‖

2
+ (c9‖ ∇g ‖4∞ + c10‖ ∇g ‖∞)‖ w ‖2

� 1
8‖ A

1
2
1w ‖

2
+ c̃10‖ w ‖2 (48)

for some constant̃c10 = c̃10(t0, v0,m,M), becauseg ∈ �.
Next, Sinceg ∈ � one can get by Lemma7, (12), (27) and the Young inequality

that

|III | = |〈(v2 · ∇)∇(p1 − p2),w〉|

� 4‖ v2 ‖ 1
2‖ A

1
2
1 v2 ‖

1
2‖ p1 − p2 ‖H2‖ w ‖ 1

2‖ A
1
2
1w ‖

1
2

� c11‖ p1 − p2 ‖H2‖ w ‖ 1
2‖ A

1
2
1w ‖

1
2
�c11‖ p1 − p2 ‖H2‖ A

1
2
1w ‖

� c11

�

(∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ u1 ‖ +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ w ‖

)
‖ A

1
2
1w ‖

� 1

4
‖ A

1
2
1w ‖

2
+ c12

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c13

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
‖ w ‖2

� 1

4
‖ A

1
2
1w ‖

2
+ c12

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c14‖ w ‖2 (49)

for some constantsci = ci(t0, v0,m,M) i = 11,12,13,14.
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By (25) we have

|IV | = |〈P1Pg(∇(p1 − p2) · ∇)v1,w〉|

� |〈(∇(p1 − p2) · ∇)v1,w〉| + 1

m
‖ k ‖ ‖ w ‖, (50)

wherek = ∫
�(∇(p1 − p2) · ∇)v1 dx. Similar to |III | we can obtain

|〈(∇(p1 − p2) · ∇)v1,w〉|

� 4‖ p1 − p2 ‖H2‖ A
1
2
1 v1 ‖‖ A

1
2
1w ‖

� 1

4
‖ A

1
2
1w ‖

2
+ c15

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c16‖ w ‖2 (51)

for some constantsci = ci(t0, v0,m,M), i = 15,16, becauseg ∈ �.
Also, we have from the integration by parts, (27) and Lemma7 that

‖ k ‖ =
∣∣∣∣
∫
�
(∇(p1 − p2) · ∇)v1 dx

∣∣∣∣ =
∣∣∣∣
∫
�
(�(p1 − p2))v1 dx

∣∣∣∣
� ‖ �(p1 − p2) ‖ ‖ v1 ‖�‖ p1 − p2 ‖H2‖ v1 ‖

� �1
�

(∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞�1 +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ w ‖

)
. (52)

So, we can obtain

1

m
‖ k ‖ ‖ w ‖ � �1

m�

(∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞�1 +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ w ‖

)
‖ w ‖

� c̃15

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c̃16‖ w ‖2 (53)

for some constants̃ci = c̃i (t0, v0,m,M), i = 15,16, becauseg ∈ �.
So by (50)–(53) we obtains

|IV |� 1

4
‖ A

1
2
1w ‖

2
+ c17

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c18‖ w ‖2 (54)

for some constantsci = ci(t0, v0,m,M), i = 17,18.
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Thus, for t � t0 > 0, by (42)–(44), (48), (49) and (54), one has

1

2

d

dt
‖ w ‖2 +

(
�2

2
− c7 − c̃8 − c̃10 − c14− c18

)
‖ w ‖2

� (c12 + c17)

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
,

which implies that

d

dt
‖ w ‖2 + �1 ‖ w ‖2��2 for t � t0 > 0,

where

�1 = �2 − 2c7 − 2c̃8 − 2c̃10 − 2c14− 2c18,

�2 = 2(c12 + c17)

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
.

So, by the Gronwall inequality, one has

‖ w(t) ‖2�‖ w(0) ‖2e−�1t + C(t) �2 for t � t0 > 0,

whereC(t) is a positive boundedt-function. But, we havew(0) = v1(0) − v2(0) =
v0 − v0 = 0 and by the definition of�2, �2 → 0 as‖ g1 − g2 ‖W1,∞ → 0. Hence, for
any fixed t � t0 > 0 andv0 ∈ H1, ‖ w(t) ‖2 goes to zero as‖ g1 − g2 ‖W1,∞ → 0. It
means that for the fixedv0 ∈ H1 and t � t0 > 0, we have

‖ �̃w(g1, v0, t) − �̃w(g2, v0, t) ‖2 = ‖ P1�w(g1, Pg1v0, t) − P1�w(g2, Pg2v0, t) ‖2

= ‖ P1u1(t) − P1u2(t) ‖2 = ‖ v1(t) − v2(t) ‖2
= ‖ w(t) ‖2�C(t)�2,

which goes to zero as‖ g1 − g2 ‖W1,∞ → 0. Hence, the solutioñ�w(g, v, t) on the
spaceH1 is continuous in terms ofg ∈ �.
Therefore, by Lemma6, for any  > 0 there exist� such that

‖ �̃w(g1, v1, t1) − �̃w(g2, v2, t2) ‖2

� ‖ �̃w(g1, v1, t1) − �̃w(g2, v1, t1) ‖2 + ‖ �̃w(g2, v1, t1) − �̃w(g2, v2, t2) ‖2�,
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whenever

‖ (g1, v1, t1) − (g2, v2, t2) ‖�×H1×(0,∞)

� ‖ (g1, v1, t1) − (g2, v1, t1) ‖�×H1×(0,∞)

+ ‖ (g2, v1, t1) − (g2, v2, t2) ‖�×H1×(0,∞)��.

Thus, we complete the proof.�

Now, let us go back to Remark1 and Proposition6.
Let u0 ∈ H1 andug = vg + ∇pg be a weak solution of the Eq. (10) with the initial

dataug(0) = Pgu0. Then, forg ∈ �, by (15), there exists sometg = tg(u0)�0 such
that

‖ ug(t) ‖2
g
�2�2‖ f ‖2g � M2

2�4m2‖ f ‖2g for t � tg(u0).

Also, by (30) one obtains

‖ vg ‖2 = ‖ P1ug ‖2� M3

2�4m3‖ f ‖2 for t � tg(u0).

Definition 5. We define the setUw ⊂ H1 as

Uw =
{
v ∈ H1 : ‖ v ‖2� M3

2�4m3‖ f ‖2
}

.

Proof of Theorem I. First, for g ∈ �, one can see easily from the definition of
�̃w(g, v, t) that the semiflow�̃w(g, v, t) on H1 has a global attractor. In fact,P1Ag is
the global attractor of the semiflow̃�w(g, v, t), whereAg is the global attractor of the
semiflow generated by weak solutions of (10).
Also, by Lemmas6 and8, one note that̃�w(1, v, t) = �w(1, v, t) be imbedded into

continuous family�̃w(g, v, t).
Then, by the definition of the setUw, for g ∈ �, �̃w(g, v, t) is asymptotically compact

on Uw because the global attractorP1Ag of the semiflow�̃w(g, v, t) is contained in
the setUw.
Therefore, by the Robustness theorem, Proposition9 that �̃w(g, v, t) is robust at

P1A1 = A1 the attractor of�̃w(1, v, t) = �w(1, v, t). One should note thatA1 is the
global attractor of the 2D Navier–Stokes equations.�
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4.3. Proof of Theorem II

We define�̃s(g, v, t) on V1 by

�̃s(g, v, t) = P1�s(g, Pgv, t), (55)

where�s(g, Pgv, t) is a semiflow on the spaceVg generated by the strong solutions
of the Eq. (10) with the initial conditionPgu.

Lemma 9. Let the forcing termf ∈ L2(�) be a time-independent function. Then
�̃s(g, v, t) is a semiflow onV1, for any fixedg ∈ �.

Proof. Since�s(g, Pgv, t) is a semiflow onVg, one has by Lemma2 that

�̃s(g, v,0) = P1(�s(g, Pgv,0)) = P1(Pgv) = v

for all v ∈ V1. Similar to Lemma6, one can obtains that

�̃s(g, �̃s(g, v, s), t) = �̃s(g, v, s + t), s, t �0.

Next, to prove the continuity of̃�s with respect tou, we have from (5) and (33) that

‖ A
1
2
1 (�̃s(g, v1, t) − �̃s(g, v2, t)) ‖

2

= ‖ A
1
2
1 (P1�s(g, Pgv1, t) − P1�s(g, Pgv2, t)) ‖

2

= ‖ A
1
2
1 (P1[�s(g, Pgv1, t) − �s(g, Pgv2, t)]) ‖

2

� 1

m
‖ A

1
2
g [�s(g, Pgv1, t) − �s(g, Pgv2, t)] ‖

2

g

� 1

m
e
2(t)‖ A

1
2
g (Pgv1 − Pgv2) ‖

2

g
� 1

ml1
e
2(t)‖ A

1
2
1 (v1 − v2) ‖

2
,

which implies the continuity with respect tou on the spaceV1, for fixed t > 0. Also,
by (33), one obtains

‖ A
1
2
1 (�̃s(g, v, t1) − �̃s(g, v, t2)) ‖

2

= ‖ A
1
2
1 (P1�s(g, Pgv, t1) − P1�s(g, Pgv, t2)) ‖

2

� 1

m
‖ A

1
2
g (�s(g, Pgv, t1) − �s(g, Pgv, t2)) ‖

2

g
.
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Since�s(g, Pgv, t) is a semiflow onVg, �s(g, Pgv, t) is continuous with respect tot
and hencẽ�s(g, v, t) is continuous with respect tot, on the spaceV1. �

Now, we want to show that the semiflow̃�s(g, v, t) is continuous with respect tog,
on the spaceV1.

Lemma 10. Let the forcing termf ∈ L2(�) be a time-independent function with∫
� f dx = 0. Then the semiflows

�̃s(g, v, t) : � × V1 × (0,∞) → V1

is continuous.

Proof. By taking the scalar product ofA1w into the Eq. (41), one obtains

1

2

d

dt
‖ A

1
2
1w ‖

2
+ ‖ A1w ‖2

� |〈(v1 · ∇)w, A1w〉| + |〈(w · ∇)v2, A1w〉|
+ |〈(w · ∇)∇p1, A1w〉| + |〈(v2 · ∇)∇(p1 − p2), A1w〉|
+ |〈P1Pg(∇(p1 − p2) · ∇)v1, A1w〉| + |〈P1Pg(∇p2 · ∇)w, A1w〉|

= |I | + |II | + |III | + |IV | + |V | + |V I | (56)

for t � t0 > 0. Now, by applying the Young inequality, Proposition3 and Lemma7,
we have

|I | = |〈(v1 · ∇)w, A1w〉|�	2‖ A1v1 ‖ ‖ A
1
2
1w ‖ ‖ A1w ‖

� 1
8‖ A1w ‖2 + c19‖ A

1
2
1w ‖

2
(57)

for some constantc19 = c19(t0, v0,m,M). Similar to |I | we can obtains by the Young
inequality, Proposition3 and Lemma7 that

|II | = |〈(w · ∇)v2, A1w〉|�	2‖ A
1
2
1w ‖ ‖ A1v2 ‖ ‖ A1w ‖

� 1
8‖ A1w ‖2 + c20‖ A

1
2
1w ‖

2
(58)

for some constantc20 = c20(t0, v0,m,M).
Before we estimate|III |, sinceg ∈ � one note from (22) and Remark2 that

‖ pi ‖H3��0‖ g ‖W2,∞‖ ui ‖H1��0M0‖ ui ‖H1 for i = 1,2 (59)
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for some positive constant�0 = �0(m,M). Now, by the Young inequality, Proposition
3, Lemma7, (13) and (59) we have

|III | = |〈(w · ∇)∇p1, A1w〉|�	1‖ w ‖H1 ‖ A1w ‖ ‖ p1 ‖H3

� 	1�0M0‖ w ‖H1 ‖ A1w ‖ ‖ u1 ‖H1

� 	1�0�̃
2
M0‖ A

1
2
g u1 ‖

g
‖ A

1
2
1w ‖ ‖ A1w ‖

� c21M0‖ A
1
2
1w ‖ ‖ A1w ‖

� 1
8‖ A1w ‖2 + c22‖ A

1
2
1w ‖

2
(60)

for some constantsci = ci(t0, v0,m,M,M0), i = 21,22 becauseg ∈ �.
Next, by (25) we have

|V I | = |〈P1Pg(∇p2 · ∇)w, A1w〉|

� |〈(∇p2 · ∇)w, A1w〉| + 1

m
‖ k ‖ ‖ A1w ‖, (61)

wherek = ∫
�(∇p2 · ∇)w dx.

Similar to |III |, by Proposition3, Lemma7, (13) and (59), there exist some constant
c23 = c23(t0, v0,m,M,M0) such that

|〈(∇p2 · ∇)w, A1w〉| � 	1‖ p2 ‖H3‖ w ‖H1‖ A1w ‖

� 1
8‖ A1w ‖2 + c23‖ A

1
2
1w ‖

2
. (62)

Then by (47) and the Young inequality we have

1

m
‖ k ‖ ‖ A1w ‖ � c10‖ ∇g ‖∞‖ w ‖ ‖ A1w ‖

� c10‖ ∇g ‖∞‖ A
1
2
1w ‖ ‖ A1w ‖

� 1
8‖ A1w ‖2 + c24‖ A

1
2
1w ‖

2
(63)

for some constantc24 = c24(t0, v0,m,M) becauseg ∈ �.
So by (61)–(63) we have

|V I |� 1
4‖ A1w ‖2 + (c23+ c24)‖ A

1
2
1w ‖

2
. (64)
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Next, to estimate|IV |, by Proposition3, Lemma7, (13) and (27), one can get

|IV | = |〈(v2 · ∇)∇(p1 − p2), A1w〉|�	1‖ v2 ‖H2‖ p1 − p2 ‖H2‖ A1w ‖
� �̃	1 ‖ A1v2 ‖ ‖ p1 − p2 ‖H2‖ A1w ‖ �	1�̃�3 ‖ A1w ‖ ‖ p1 − p2 ‖H2

� 	1�̃�3
�

‖ A1w ‖
(∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ u1 ‖ +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ w ‖

)

� 1

8
‖ A1w ‖2 + c26

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c27 ‖ A

1
2
1w ‖

2
(65)

for some constantsci = ci(t0, v0,m,M), i = 26,27 becauseg ∈ �.
To estimate|V | we have by (25)

|V | = |〈P1Pg(∇(p1 − p2) · ∇)v1, A1w〉|

� |〈(∇(p1 − p2) · ∇)v1, A1w〉| + 1

m
‖ k ‖ ‖ A1w ‖, (66)

wherek = ∫
�(∇(p1 − p2) · ∇)v1 dx.

Then, similar to|IV |, by Proposition3, Lemma7, (13), (25) and (27) that

|〈(∇(p1 − p2) · ∇)v1, A1w〉| � 	1‖ p1 − p2 ‖H2‖ v1 ‖H2‖ A1w ‖

� 1

8
‖ A1w ‖2 + c28

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c29 ‖ A

1
2
1w ‖

2
(67)

for some constantsci = ci(t0, v0,m,M), i = 28,29.
Also, by (47), (48) and the Young inequality we obtain

1

m
‖ k ‖ ‖ A1w ‖

� �1
m�

(∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣∞�1 +

∣∣∣∣
∣∣∣∣∇g2

g2

∣∣∣∣
∣∣∣∣∞ ‖ w ‖

)
‖ A1w ‖

� 1

8
‖ A1w ‖2 + c30

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ c31‖ A

1
2
1w ‖

2
(68)

for some constantsci = ci(t0, v0,m,M), i = 30,31.
Therefore, by (66)–(68) we get

|V |� 1

4
‖ A1w ‖2 + (c28+ c30)

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
+ (c29+ c31) ‖ A

1
2
1w ‖

2
. (69)
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Thus, for t � t0 > 0, we have by (56)–(58), (60), (64), (65) and (69) that

d

dt
‖ A

1
2
1w ‖

2
� 2(c19+ c20 + c22 + c23+ c24+ c27+ c29+ c31)‖ A

1
2
1w ‖

2

+2(c26+ c28+ c30)

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
,

which implies that

d

dt
‖ A

1
2
1w ‖

2
��3 ‖ A

1
2
1w ‖

2
+ �4 t � t0 > 0,

where

�3 = 2(c19+ c20 + c22 + c24+ c25+ c27+ c29+ c31),

�4 = 2(c26+ c28+ c30)

∣∣∣∣
∣∣∣∣∇g1

g1
− ∇g2

g2

∣∣∣∣
∣∣∣∣
2

∞
.

Hence, by Gronwall inequality, one has

‖ A
1
2
1w(t) ‖

2
�‖ A

1
2
1w(0) ‖

2
e�3t + C̃(t) �4 for t � t0 > 0,

where C̃(t) is some positive boundedt-function. But, we havew(0) = v1(0) − v2(0)

= v0 − v0 = 0 which implies‖ A
1
2
1w(0) ‖ = 0. Also, we note that by the definition

of �4, �4 → 0 as ‖ g1 − g2 ‖W1,∞ → 0. Therefore,‖ A
1
2
1w(t) ‖

2
goes to zero as

‖ g1 − g2 ‖W1,∞ → 0. It means that for any fixedv0 ∈ V1 and t � t0 > 0, we have

‖ A
1
2
1 (�̃s(g1, v0, t) − �̃s(g2, v0, t)) ‖

2

= ‖ A
1
2
1 [P1�s(g1, Pg1v0, t) − P1�s(g2, Pg2v0, t)] ‖

2

= ‖ A
1
2
1 (P1u1(t) − P1u2(t)) ‖

2
= ‖ A

1
2
1 (v1(t) − v2(t)) ‖

2

= ‖ A
1
2
1w(t) ‖

2
�C̃(t)�4,

which goes to zero as‖ g1 − g2 ‖W1,∞ goes to zero. Hence, the solution�̃s(g, v, t) on
the spaceV1 is continuous in terms ofg ∈ �.
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Therefore, by Lemma9, for any  > 0 there exist� such that

‖ A
1
2
1 (�̃s(g1, v1, t1) − �̃s(g2, v2, t2)) ‖

2

� ‖ A
1
2
1 (�̃w(g1, v1, t1) − �̃w(g2, v1, t1)) ‖

2

+ ‖ A
1
2
1 (�̃w(g2, v1, t1) − �̃w(g2, v2, t2)) ‖

2
�,

whenever

‖ (g1, v1, t1) − (g2, v2, t2) ‖�×V1×(0,∞)

� ‖ (g1, v1, t1) − (g2, v1, t1) ‖�×V1×(0,∞)

+ ‖ (g2, v1, t1) − (g2, v2, t2) ‖�×V1×(0,∞)��.

Thus, we complete the proof. �

Let v0 ∈ V1 andug is a strong solution of the Eq. (10) with the initial dataug(0) =
Pgv0. Then by (16), there exist 0� tg = tg(v0) andL1 such that

‖ A
1
2
g ug(t) ‖

2

g
�2L1 for all t � tg,

which implies by (33) that

‖ A
1
2
1P1ug ‖

2
� 2L1

m
for all t � tg,

whereg ∈ �. One should note that in the inequality (16) we can choose the constant
L1 which depends only onm andM, but not‖ ∇g ‖∞ wheng ∈ �. Therefore, for the
given f ∈ L2(�), there exist some positive constantsL1 = L1(m,M, f ) such that

‖ A
1
2
1P1ug ‖

2
� 2L1

m
for all t � tg, g ∈ �.

Refer to Roh[7] for the details ofL1.

Definition 6. We define the setUs ⊂ V1 as

Us =
{
v ∈ V1 : ‖ A

1
2
1 v ‖

2
� 2L1

m

}
.
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Proof of Theorem II. First, for g ∈ �, one can easily see from the definition of
�̃s(g, v, t) that the semiflow�̃s(g, v, t) on the spaceV1 has a global attractor as we
mentioned for the semiflow̃�w(g, v, t).
Also, by Lemmas9 and 10, one note that̃�s(1, v, t) be imbedded into continuous

family �̃s(g, v, t).
Moreover, by the definition of the setUs , for g ∈ � �̃s(g, v, t) is asymptotically

compact onUs because the global attractor of the semiflow�̃s(g, v, t) is contained in
the setUs .
Therefore, by the Robustness theorem, Proposition9 that the semiflow�̃s(g, v, t) is

robust atA1, the global attractor of̃�s(1, v, t) = �s(1, v, t). Note thatA1 is the global
attractor of the 2D Navier–Stokes equations.
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