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A rigorous normal mode error analysis is carried out for two second-order projection type
methods. It is shown that although the two schemes provide second-order accuracy for the
velocity in L2-norm, their accuracies for the velocity in H1-norm and for the pressure in L2-
norm are different, and only the Gauge-Uzawa scheme introduced provides full second-order
accuracy for all variable in their natural norms. The advantages and disadvantages of the normal
mode analysis vs. the energy method are also elaborated.

GAUGE-UZAWA METHOD

Many projection type methods have been constructed to solve Navier-Stokes equations, and
become the Representative solver in incompressible flows community. However they are still
suffer from boundary layer, inconsistency, stability, or suboptimal accuracy, so on. Those diffi-
culties are disappeared in Gauge-Uzawa method which has been studied in [3,5,7] and displays
superior numerical performance. The goal of this paper is to prove fully 2nd order accuracy
for velocity in L∞(0, T ;L2(Ω)) and L∞(0, T ;H1(Ω)) and for pressure in L∞(0, T ; L2(Ω)) in
normal mode space. We now introduce Gauge-Uzawa method:

Set initial values using a first-order gauge method with ρ0 = 0 and repeat for 2 ≤ n ≤ N =
[T

τ
− 1].

Step 1 Find ũn+1 as the solution of




3ũn+1 − 4ũn + ũn−1

2τ
+ ∇(2pn − pn−1) − ν4ũn+1 = gn+1,

ũn+1|Γ = 0.

Step 2 Find ρn+1 as the solution of




−4ρn+1 = −4ρn + ∇ · ũn+1,

∂νννρ
n+1|Γ = 0.



Step 3 Update un+1 and pn+1 by

un+1 = ũn+1 + ∇(ρn+1 − ρn)

pn+1 = pn −
3ρn+1 − 4ρn + ρn−1

2τ
+ ν4ρn+1.

(1)

THE MAIN RESULTS

We consider computational domain Ω = [−1, 1]×[0, 2π] and u = (u, v) have periodic boundary
conditions on y = 0 and y = 2π, it means u(x, 0) = u(x, 2π). In addition, u(−1, y) =
u(1, y) = 0. We now assume (u, p)(x, t) = exp(σt)(ū, p̄)(x) to find the normal mode solution
of Navier-Stokes equations. Then the symmetric solutions are





ū(x) = cos µx − cos µ
cosh kx

cosh k
,

v̄(x) =
µ

ik
sin µx +

1

i
cos µ

sinh kx

cosh k
,

p̄(x) =
σ

k
cos µ

sinh kx

cosh k
,

where −µ2 = k2 + σ

ν
.

Since v̄(x) vanishes on boundary, we obtain

µ tanµ + k tanh k = 0.

We can find unique µ on each interval Is = (2s−1

2
π, 2s+1

2
π). So the general normal mode solution

of Navier-Stokes equations is

(u, p)(x, y, t) =
∑

k

∑

s

αk,s exp(σk,Is
· t)(ūk,Is

, p̄k,Is
)(x) exp(ky)

where αk,s and βk,s are constants in the given initial velocity;

u(x, y, 0) =
∑

k

∑

s

αk,sūk,Is
(x) exp(ky).

We now start to find the normal mode solution of the Gauge-Uzawa method with a assump-
tion

(un, pn) = ρn(û, p̂).

Then we can get the symmetric solutions:




û(x) = cos µ̃x − cos µ̃
cosh kx

cosh k
,

v̂(x) =
µ̃

ik
sin µ̃x +

1

i
cos µ̃

sinh kx

cosh k
+

1

ik

(ρ − 1)2

2ρ − 1

k2 + µ̃2

µ̃
sin µ̃x,

p̂(x) =
−ρ2

2ρ − 1

µ̃2 + k2

k
ν cos µ̃

sinh kx

cosh k
.



Since v̂(x) has 0 on boundary x = ±1, we obtain useful results

µ̃ tan µ̃ + k tanh k = −
(ρ − 1)2

2ρ − 1

k2 + µ̃2

µ̃
tan µ̃.

−µ̃2 = k2 +
(3ρ − 1)(ρ − 1)

2τρ2ν
, ρ ∈

(
1

3
, 1

)

µ̃ is unique in each Is = (2s−1

2
π, 2s+1

2
π). If we consider fixed interval Is and fixed k, ρ → 1 as

τ → 0. So we can get the following result
∥∥∥u(tN+1) − uN+1

∥∥∥
L∞

+
∥∥∥p(tN+1) − pN+1

∥∥∥
L∞

+
∥∥∥∇ · (u(tN+1) − uN+1)

∥∥∥
L∞

≤ τ 2.

Finally, we extend this results via energy estimate to
∥∥∥∇(u(tN+1) − uN+1)

∥∥∥
L∞

≤ τ 2.

We note that it is possible ρ ≈ 1

2
which is unstable condition, if τ is not small enough. So

we have to assume τ is small enough to hold the accuracy results.
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