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A rigorous normal mode error analysis is carried out for two second-order projection type
methods. It is shown that although the two schemes provide second-order accuracy for the
velocity in L2-norm, their accuracies for the velocity in H'-norm and for the pressure in L?-
norm are different, and only the Gauge-Uzawa scheme introduced provides full second-order
accuracy for all variable in their natural norms. The advantages and disadvantages of the normal
mode analysis vs. the energy method are also elaborated.

GAUGE-UZAWA METHOD

Many projection type methods have been constructed to solve Navier-Stokes equations, and
become the Representative solver in incompressible flows community. However they are still
suffer from boundary layer, inconsistency, stability, or suboptimal accuracy, so on. Those diffi-
culties are disappeared in Gauge-Uzawa method which has been studied in [3,5,7] and displays
superior numerical performance. The goal of this paper is to prove fully 2nd order accuracy
for velocity in L*>°(0,T; L*(Q)) and L>(0,T; H'(2)) and for pressure in L>(0,T; L*(2)) in
normal mode space. We now introduce Gauge-Uzawa method:

Set initial values using a first-order gauge method with p° = 0 and repeat for2 < n < N =
-1
Step 1 Find u""! as the solution of
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Step 2 Find p"*! as the solution of
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Step 3 Update u™*! and p"*! by
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THE MAIN RESULTS
We consider computational domain Q2 = [—1, 1] x [0, 27] and u = (u, v) have periodic boundary

conditions on y = 0 and y = 27, it means u(z,0) = u(z,27). In addition, u(—1,y) =
u(1l,y) = 0. We now assume (u, p)(z,t) = exp(ot)(u, p)(x) to find the normal mode solution
of Navier-Stokes equations. Then the symmetric solutions are
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where —p* = k* 4 2.
Since v(z) vanishes on boundary, we obtain

ptan pu + ktanh k = 0.
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We can find unique p on each interval I, = ( 7). So the general normal mode solution

of Navier-Stokes equations is
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where oy, s and (3, ; are constants in the given initial velocity;
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We now start to find the normal mode solution of the Gauge-Uzawa method with a assump-
tion

(u", p") = p" (W, p).

Then we can get the symmetric solutions:
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Since ©(z) has 0 on boundary x = +1, we obtain useful results
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[t 1s unique in each [, = (%ﬂ, 252—+17T) If we consider fixed interval /; and fixed k, p — 1 as

7 — 0. So we can get the following result
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Finally, we extend this results via energy estimate to
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We note that it is possible p ~ % which is unstable condition, if 7 is not small enough. So
we have to assume 7 is small enough to hold the accuracy results.
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